β-Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4
- PMID: 27789711
- PMCID: PMC5207078
- DOI: 10.1074/jbc.M116.757138
β-Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4
Abstract
The chemokine receptor CXCR4 and its chemokine ligand CXCL12 mediate directed cell migration during organogenesis, immune responses, and metastatic disease. However, the mechanisms governing CXCL12/CXCR4-dependent chemotaxis remain poorly understood. Here, we show that the β-arrestin1·signal-transducing adaptor molecule 1 (STAM1) complex, initially identified to govern lysosomal trafficking of CXCR4, also mediates CXCR4-dependent chemotaxis. Expression of minigene fragments from β-arrestin1 or STAM1, known to disrupt the β-arrestin1·STAM1 complex, and RNAi against β-arrestin1 or STAM1, attenuates CXCL12-induced chemotaxis. The β-arrestin1·STAM1 complex is necessary for promoting autophosphorylation of focal adhesion kinase (FAK). FAK is necessary for CXCL12-induced chemotaxis and associates with and localizes with β-arrestin1 and STAM1 in a CXCL12-dependent manner. Our data reveal previously unknown roles in CXCR4-dependent chemotaxis for β-arrestin1 and STAM1, which we propose act in concert to regulate FAK signaling. The β-arrestin1·STAM1 complex is a promising target for blocking CXCR4-promoted FAK autophosphorylation and chemotaxis.
Keywords: C-X-C chemokine receptor type 4 (CXCR-4); CXCL12; G protein-coupled receptor (GPCR); PTK2 protein tyrosine kinase 2 (PTK2) (focal adhesion kinase) (FAK); STAM; chemokine; chemotaxis; β-arrestin.
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Figures










Similar articles
-
A non-GPCR-binding partner interacts with a novel surface on β-arrestin1 to mediate GPCR signaling.J Biol Chem. 2020 Oct 9;295(41):14111-14124. doi: 10.1074/jbc.RA120.015074. Epub 2020 Aug 4. J Biol Chem. 2020. PMID: 32753481 Free PMC article.
-
β-Arrestin1 and β-Arrestin2 Are Required to Support the Activity of the CXCL12/HMGB1 Heterocomplex on CXCR4.Front Immunol. 2020 Sep 18;11:550824. doi: 10.3389/fimmu.2020.550824. eCollection 2020. Front Immunol. 2020. PMID: 33072091 Free PMC article.
-
Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45.J Biol Chem. 2003 Mar 14;278(11):9536-43. doi: 10.1074/jbc.M211803200. Epub 2003 Jan 8. J Biol Chem. 2003. PMID: 12519755
-
CXCL12/CXCR4 signal transduction in diseases and its molecular approaches in targeted-therapy.Immunol Lett. 2020 Jan;217:91-115. doi: 10.1016/j.imlet.2019.11.007. Epub 2019 Nov 17. Immunol Lett. 2020. PMID: 31747563 Review.
-
CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion.J Mol Histol. 2004 Mar;35(3):233-45. doi: 10.1023/b:hijo.0000032355.66152.b8. J Mol Histol. 2004. PMID: 15339043 Review.
Cited by
-
Control of focal adhesion kinase activation by RUNX1-regulated miRNAs in high-risk AML.Leukemia. 2023 Apr;37(4):776-787. doi: 10.1038/s41375-023-01841-z. Epub 2023 Feb 14. Leukemia. 2023. PMID: 36788336
-
Receptor Determinants for β-Arrestin Functional Specificity at C-X-C Chemokine Receptor 5.Mol Pharmacol. 2024 Nov 18;106(6):287-297. doi: 10.1124/molpharm.124.000942. Mol Pharmacol. 2024. PMID: 39472027 Free PMC article.
-
Functional anatomy of the full-length CXCR4-CXCL12 complex systematically dissected by quantitative model-guided mutagenesis.Sci Signal. 2020 Jul 14;13(640):eaay5024. doi: 10.1126/scisignal.aay5024. Sci Signal. 2020. PMID: 32665413 Free PMC article.
-
Could gastrointestinal tumor-initiating cells originate from cell-cell fusion in vivo?World J Gastrointest Oncol. 2021 Feb 15;13(2):92-108. doi: 10.4251/wjgo.v13.i2.92. World J Gastrointest Oncol. 2021. PMID: 33643526 Free PMC article. Review.
-
Altered CXCR4 dynamics at the cell membrane impairs directed cell migration in WHIM syndrome patients.Proc Natl Acad Sci U S A. 2022 May 24;119(21):e2119483119. doi: 10.1073/pnas.2119483119. Epub 2022 May 19. Proc Natl Acad Sci U S A. 2022. PMID: 35588454 Free PMC article.
References
-
- Ridley A. J. (2011) Life at the leading edge. Cell 145, 1012–1022 - PubMed
-
- Peled A., Petit I., Kollet O., Magid M., Ponomaryov T., Byk T., Nagler A., Ben-Hur H., Many A., Shultz L., Lider O., Alon R., Zipori D., and Lapidot T. (1999) Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845–848 - PubMed
-
- Tachibana K., Hirota S., Iizasa H., Yoshida H., Kawabata K., Kataoka Y., Kitamura Y., Matsushima K., Yoshida N., Nishikawa S., Kishimoto T., and Nagasawa T. (1998) The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393, 591–594 - PubMed
-
- Nagasawa T., Hirota S., Tachibana K., Takakura N., Nishikawa S., Kitamura Y., Yoshida N., Kikutani H., and Kishimoto T. (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638 - PubMed
-
- Zou Y. R., Kottmann A. H., Kuroda M., Taniuchi I., and Littman D. R. (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous