Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct 28;17(1):842.
doi: 10.1186/s12864-016-3187-z.

Genome sequence of Phormia regina Meigen (Diptera: Calliphoridae): implications for medical, veterinary and forensic research

Affiliations

Genome sequence of Phormia regina Meigen (Diptera: Calliphoridae): implications for medical, veterinary and forensic research

Anne A Andere et al. BMC Genomics. .

Abstract

Background: Blow flies (Diptera: Calliphoridae) are important medical, veterinary and forensic insects encompassing 8 % of the species diversity observed in the calyptrate insects. Few genomic resources exist to understand the diversity and evolution of this group.

Results: We present the hybrid (short and long reads) draft assemblies of the male and female genomes of the common North American blow fly, Phormia regina (Diptera: Calliphoridae). The 550 and 534 Mb draft assemblies contained 8312 and 9490 predicted genes in the female and male genomes, respectively; including > 93 % conserved eukaryotic genes. Putative X and Y chromosomes (21 and 14 Mb, respectively) were assembled and annotated. The P. regina genomes appear to contain few mobile genetic elements, an almost complete absence of SINEs, and most of the repetitive landscape consists of simple repetitive sequences. Candidate gene approaches were undertaken to annotate insecticide resistance, sex-determining, chemoreceptors, and antimicrobial peptides.

Conclusions: This work yielded a robust, reliable reference calliphorid genome from a species located in the middle of a calliphorid phylogeny. By adding an additional blow fly genome, the ability to tease apart what might be true of general calliphorids vs. what is specific of two distinct lineages now exists. This resource will provide a strong foundation for future studies into the evolution, population structure, behavior, and physiology of all blow flies.

Keywords: Blow fly; Calliphoridae; Genome; Phormia regina; Sex determination; X chromosome; Y chromosome.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
GO term classification of the 3 functional categories (biological processes, molecular function and cellular component) of the predicted genes in the male and female genome assemblies
Fig. 2
Fig. 2
The top 35 KEGG biological pathways of the male and female gene sets extracted from the Blast2GO analysis
Fig. 3
Fig. 3
Predicted gene structure of the sex determining gene daughterless for the female (F) and male (M) P. regina. The red boxes represent the exon, the grey boxes inclusive of the red represent the mRNA, and the black line represent the intron. Image is not drawn to scale
Fig. 4
Fig. 4
Transposable element accumulation in the female (a) and male (b) Phormia regina genome assemblies. Kimura 2-parameter distances were calculated between transposable element insertions in the genome and the homologous element in the dipteran Repbase library. Larger divergences indicate elements with larger mutation loads, and by extension, were deposited in the genome in the more distant past. Less than 40 SINE elements are present in either the female or male assemblies and are not shown here. Transposable elements are slightly more abundant in the female genome assembly. The accumulation of female specific repeats (c) follows that of the whole genome in general

Similar articles

Cited by

References

    1. Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–767. doi: 10.1126/science.1257570. - DOI - PubMed
    1. Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim JW, Lambkin C, Bertone MA, Cassel BK, Bayless KM, Heimberg AM, et al. Episodic radiations in the fly tree of life. Proc Natl Acad Sci U S A. 2011;108:5690–5695. doi: 10.1073/pnas.1012675108. - DOI - PMC - PubMed
    1. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al. The genome sequence of Drosophila melanogaster. Science. 2000;287:2185–2195. doi: 10.1126/science.287.5461.2185. - DOI - PubMed
    1. Scott JG, Warren WC, Beukeboom LW, Bopp D, Clark AG, Giers SD, Hediger M, Jones AK, Kasai S, Leichter CA, et al. Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biol. 2014;15:466. - PMC - PubMed
    1. Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, et al. The genome sequence of the malaria mosquito Anopheles gambiae. Science. 2002;298:129–149. doi: 10.1126/science.1076181. - DOI - PubMed

Publication types

LinkOut - more resources