Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016:913:139-147.
doi: 10.1007/978-981-10-1061-3_9.

The Potential Role of Telocytes for Tissue Engineering and Regenerative Medicine

Affiliations
Review

The Potential Role of Telocytes for Tissue Engineering and Regenerative Medicine

Raymund E Horch et al. Adv Exp Med Biol. 2016.

Abstract

Despite recent advances in surgery, medicine and anaesthesiology as well as the development of microsurgical tissue transplantation, wear out of body parts remains a problem, and organ shortage does not allow to allocate enough donor organs for patients with vital diseases and conditions. The idea to create spare parts or spare organs from the patients own cells by combining engineering approaches to cellular and molecular medicine for th purpose of Tissue Engineering (TE) was fascinating when popularized in the early 1990ies. However clinically success was limited, mainly because of a lack in rapid vascularization of large scale TE replacement constructs useful for clinical purposes. The idea to utilize cells and cytokines to aid the human organism in gradually restoring lost tissue functions has drawn attention to the wider field of Regenerative Medicine (RM). Stem cells and putative stem cells, such as the recently discovered and meanwhile well described interstitial Telocytes, which are comprised of extremely long and thin prolongations named telopodes, may well become active players in the regenerative process. This article highlights the principles of TE and RM and the potential role of Telocytes with regard to tissue regeneration.

PubMed Disclaimer

MeSH terms

LinkOut - more resources