Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb;40(1):33-45.
doi: 10.1007/s13402-016-0303-7. Epub 2016 Oct 31.

Network-based expression analysis reveals key genes related to glucocorticoid resistance in infant acute lymphoblastic leukemia

Affiliations

Network-based expression analysis reveals key genes related to glucocorticoid resistance in infant acute lymphoblastic leukemia

Zaynab Mousavian et al. Cell Oncol (Dordr). 2017 Feb.

Abstract

Purpose: Despite vast improvements that have been made in the treatment of children with acute lymphoblastic leukemia (ALL), the majority of infant ALL patients (~80 %, < 1 year of age) that carry a chromosomal translocation involving the mixed lineage leukemia (MLL) gene shows a poor response to chemotherapeutic drugs, especially glucocorticoids (GCs), which are essential components of all current treatment regimens. Although addressed in several studies, the mechanism(s) underlying this phenomenon have remained largely unknown. A major drawback of most previous studies is their primary focus on individual genes, thereby neglecting the putative significance of inter-gene correlations. Here, we aimed at studying GC resistance in MLL-rearranged infant ALL patients by inferring an associated module of genes using co-expression network analysis. The implications of newly identified candidate genes with associations to other well-known relevant genes from the same module, or with associations to known transcription factor or microRNA interactions, were substantiated using literature data.

Methods: A weighted gene co-expression network was constructed to identify gene modules associated with GC resistance in MLL-rearranged infant ALL patients. Significant gene ontology (GO) terms and signaling pathways enriched in relevant modules were used to provide guidance towards which module(s) consisted of promising candidates suitable for further analysis.

Results: Through gene co-expression network analysis a novel set of genes (module) related to GC-resistance was identified. The presence in this module of the S100 and ANXA genes, both well-known biomarkers for GC resistance in MLL-rearranged infant ALL, supports its validity. Subsequent gene set net correlation analyses of the novel module provided further support for its validity by showing that the S100 and ANXA genes act as 'hub' genes with potentially major regulatory roles in GC sensitivity, but having lost this role in the GC resistant phenotype. The detected module implicates new genes as being candidates for further analysis through associations with known GC resistance-related genes.

Conclusions: From our data we conclude that available systems biology approaches can be employed to detect new candidate genes that may provide further insights into drug resistance of MLL-rearranged infant ALL cases. Such approaches complement conventional gene-wise approaches by taking putative functional interactions between genes into account.

Keywords: Acute lymphoblastic leukemia; Drug resistance; Gene co-expression network; Glucocorticoid treatment; Systems biology.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Bioinformatics. 2009 Nov 1;25(21):2780-6 - PubMed
    1. Blood. 2010 Feb 4;115(5):1018-25 - PubMed
    1. Cancer Lett. 2015 Jan 28;356(2 Pt B):880-90 - PubMed
    1. Anticancer Res. 2012 Feb;32(2):503-6 - PubMed
    1. Leukemia. 1996 Feb;10(2):372-7 - PubMed

MeSH terms

Substances

LinkOut - more resources