Structure and Function of Iron-Loaded Synthetic Melanin
- PMID: 27802021
- PMCID: PMC5295137
- DOI: 10.1021/acsnano.6b05502
Structure and Function of Iron-Loaded Synthetic Melanin
Abstract
We describe a synthetic method for increasing and controlling the iron loading of synthetic melanin nanoparticles and use the resulting materials to perform a systematic quantitative investigation on their structure-property relationship. A comprehensive analysis by magnetometry, electron paramagnetic resonance, and nuclear magnetic relaxation dispersion reveals the complexities of their magnetic behavior and how these intraparticle magnetic interactions manifest in useful material properties such as their performance as MRI contrast agents. This analysis allows predictions of the optimal iron loading through a quantitative modeling of antiferromagnetic coupling that arises from proximal iron ions. This study provides a detailed understanding of this complex class of synthetic biomaterials and gives insight into interactions and structures prevalent in naturally occurring melanins.
Keywords: MRI; antiferromagnetic coupling; magnetometry; polymerization; synthetic melanin.
Figures







Similar articles
-
The influence of iron on selected properties of synthetic pheomelanin.Cell Biochem Biophys. 2020 Jun;78(2):181-189. doi: 10.1007/s12013-020-00918-1. Epub 2020 May 24. Cell Biochem Biophys. 2020. PMID: 32451722 Free PMC article.
-
Contrast mechanisms associated with neuromelanin-MRI.Magn Reson Med. 2017 Nov;78(5):1790-1800. doi: 10.1002/mrm.26584. Epub 2016 Dec 26. Magn Reson Med. 2017. PMID: 28019018
-
Bio-inspired, melanin-like nanoparticles as a highly efficient contrast agent for T1-weighted magnetic resonance imaging.Biomacromolecules. 2013 Oct 14;14(10):3491-7. doi: 10.1021/bm4008138. Epub 2013 Sep 13. Biomacromolecules. 2013. PMID: 23987128
-
Is neuromelanin changed in Parkinson's disease? Investigations by magnetic spectroscopies.J Neural Transm (Vienna). 2006 Jun;113(6):769-74. doi: 10.1007/s00702-005-0448-4. Epub 2006 May 12. J Neural Transm (Vienna). 2006. PMID: 16755381 Review.
-
Magnetic nanoparticles in magnetic resonance imaging and diagnostics.Pharm Res. 2012 May;29(5):1165-79. doi: 10.1007/s11095-012-0711-y. Epub 2012 Mar 6. Pharm Res. 2012. PMID: 22392330 Review.
Cited by
-
Iron-Chelated Polydopamine Decorated Doxorubicin-Loaded Nanodevices for Reactive Oxygen Species Enhanced Cancer Combination Therapy.Front Pharmacol. 2019 Feb 6;10:75. doi: 10.3389/fphar.2019.00075. eCollection 2019. Front Pharmacol. 2019. PMID: 30787876 Free PMC article.
-
Dinuclear Fe(III) Hydroxypropyl-Appended Macrocyclic Complexes as MRI Probes.Inorg Chem. 2021 Jun 21;60(12):8651-8664. doi: 10.1021/acs.inorgchem.1c00634. Epub 2021 Jun 10. Inorg Chem. 2021. PMID: 34110140 Free PMC article.
-
Polydopamine Nanomaterials: Recent Advances in Synthesis Methods and Applications.Front Bioeng Biotechnol. 2018 Aug 17;6:109. doi: 10.3389/fbioe.2018.00109. eCollection 2018. Front Bioeng Biotechnol. 2018. PMID: 30175095 Free PMC article. Review.
-
Tumor-specific activatable biopolymer nanoparticles stabilized by hydroxyethyl starch prodrug for self-amplified cooperative cancer therapy.Theranostics. 2022 Jan 1;12(2):944-962. doi: 10.7150/thno.67572. eCollection 2022. Theranostics. 2022. PMID: 34976222 Free PMC article.
-
Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications.Int J Mol Sci. 2017 Aug 7;18(8):1719. doi: 10.3390/ijms18081719. Int J Mol Sci. 2017. PMID: 28783106 Free PMC article. Review.
References
-
- d’Ischia M, Napolitano A, Ball V, Chen C-T, Buehler MJ. Polydopamine and Eumelanin: From Structure–Property Relationships to a Unified Tailoring Strategy. Acc. Chem. Res. 2014;47:3541–3550. - PubMed
-
- Ju K-Y, Lee Y, Lee S, Park SB, Lee J-K. Bioinspired Polymerization of Dopamine to Generate Melanin-Like Nanoparticles Having an Excellent Free-Radical-Scavenging Property. Biomacromolecules. 2011;12:625–632. - PubMed
-
- Liu Y, Ai K, Lu L. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014;114:5057–5115. - PubMed
-
- Ai K, Liu Y, Ruan C, Lu L, Lu GM. Sp2 C-Dominant N-Doped Carbon Sub-Micrometer Spheres with a Tunable Size: A Versatile Platform for Highly Efficient Oxygen-Reduction Catalysts. Adv. Mater. 2013;25:998–1003. - PubMed
-
- Ma S, Liu L, Bromberg V, Singler TJ. Electroless Copper Plating of Inkjet-Printed Polydopamine Nanoparticles: a Facile Method to Fabricate Highly Conductive Patterns at Near Room Temperature. ACS Appl. Mater. Interfaces. 2014;6:19494–19498. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical