Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct-Dec;11(4):269-276.
doi: 10.4103/1817-1737.191868.

Diagnostic implications of computed tomography pulmonary angiography in patients with pulmonary embolism

Affiliations

Diagnostic implications of computed tomography pulmonary angiography in patients with pulmonary embolism

Ayman El-Menyar et al. Ann Thorac Med. 2016 Oct-Dec.

Abstract

Introduction: Pulmonary embolism (PE) is a serious cardiovascular and pulmonary complication worldwide. We aimed to assess the implications of different computed tomography pulmonary angiography (CTPA) parameters in patients with acute PE.

Methods: A retrospective observational study to include patients presented with clinical suspicious of PE who underwent CTPA was conducted. Patients' demographics, clinical presentation, risk factors, laboratory investigations, management, and outcome were analyzed. Computed tomography findings included clot burden (Qanadli score [QS]) and right ventricular dysfunction (RVD) parameters.

Results: A total of 45 patients with radiologically confirmed diagnosis of PE were included in the study; of these patients, 8 (17.8%) died during the hospital course. Patients who died were 13 years older than those who survived, and the mortality rate was significantly higher in patients with cancer. The two groups were comparable for cardiovascular parameters. The mean clot burden (QS) was 19.5 ± 11.3 points and 53% of patients had QS >18 points. Obesity (52.4% vs. 12.5%; P = 0.01), hypertension (54.4% vs. 23.8%; P = 0.03), and median D-dimer levels (7.8 vs. 3.4; P = 0.03) were significantly higher in patients with QS >18. Among right ventricular (RV) dysfunction parameters, only higher RV/left ventricular (LV) ratio (P = 0.001) and bowing of interventricular septum (P = 0.001) were associated with higher QS. A significant positive correlation was found between RV short axis (r = 0.499, P = 0.001), RV/LV ratio (r = 0.592, P = 0.001), and pulmonary artery (PA) diameter (r = 0.301, P = 0.04) with the PA clot burden. Receiver operating characteristic curve for clot burden showed a cutoff value of 17.5 points to accurately predict RV dysfunction.

Conclusions: Clot burden >18 is associated with RV dysfunction in patients with acute PE. Echocardiography and RVD parameters showed no correlation with in-hospital deaths. CTPA has clinicoradiological implications for risk stratification in PE patients. As the sample size is small, our findings warrant further larger prospective studies.

Keywords: Computed tomography angiogram; pulmonary embolism; right ventricular dysfunction; thromboembolism.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Computed tomography pulmonary angiography axial (a, c, and d) and coronal (b) images reveal pulmonary embolism involving bilateral main pulmonary arteries with infarct in the left lung. (d) Right ventricular/left ventricular ratio = 2.1
Figure 2
Figure 2
(a-c) Computed tomography pulmonary angiography axial images reveal saddle thrombus extending to bilateral pulmonary arteries with reflux of contrast into inferior vena cava and hepatic veins. (b) Right ventricular/left ventricular ratio = 2.4

Similar articles

Cited by

References

    1. Subramaniam RM, Mandrekar J, Chang C, Blair D, Gilbert K, Peller PJ, et al. Pulmonary embolism outcome: A prospective evaluation of CT pulmonary angiographic clot burden score and ECG score. AJR Am J Roentgenol. 2008;190:1599–604. - PubMed
    1. Pulido T, Aranda A, Zevallos MA, Bautista E, Martínez-Guerra ML, Santos LE, et al. Pulmonary embolism as a cause of death in patients with heart disease: An autopsy study. Chest. 2006;129:1282–7. - PubMed
    1. Bahloul M, Chaari A, Kallel H, Abid L, Hamida CB, Dammak H, et al. Pulmonary embolism in intensive care unit: Predictive factors, clinical manifestations and outcome. Ann Thorac Med. 2010;5:97–103. - PMC - PubMed
    1. Belohlávek J, Dytrych V, Linhart A. Pulmonary embolism, part I: Epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism. Exp Clin Cardiol. 2013;18:129–38. - PMC - PubMed
    1. Kasper W, Konstantinides S, Geibel A, Olschewski M, Heinrich F, Grosser KD, et al. Management strategies and determinants of outcome in acute major pulmonary embolism: Results of a multicenter registry. J Am Coll Cardiol. 1997;30:1165–71. - PubMed