Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct 20:7:1567.
doi: 10.3389/fpls.2016.01567. eCollection 2016.

High-Throughput Sequencing Reveals H2O2 Stress-Associated MicroRNAs and a Potential Regulatory Network in Brachypodium distachyon Seedlings

Affiliations

High-Throughput Sequencing Reveals H2O2 Stress-Associated MicroRNAs and a Potential Regulatory Network in Brachypodium distachyon Seedlings

Dong-Wen Lv et al. Front Plant Sci. .

Abstract

Oxidative stress in plants can be triggered by many environmental stress factors, such as drought and salinity. Brachypodium distachyon is a model organism for the study of biofuel plants and crops, such as wheat. Although recent studies have found many oxidative stress response-related proteins, the mechanism of microRNA (miRNA)-mediated oxidative stress response is still unclear. Using next generation high-throughput sequencing technology, the small RNAs were sequenced from the model plant B. distachyon 21 (Bd21) under H2O2 stress and normal growth conditions. In total, 144 known B. distachyon miRNAs and 221 potential new miRNAs were identified. Further analysis of potential new miRNAs suggested that 36 could be clustered into known miRNA families, while the remaining 185 were identified as B. distachyon-specific new miRNAs. Differential analysis of miRNAs from the normal and H2O2 stress libraries identified 31 known and 30 new H2O2 stress responsive miRNAs. The expression patterns of seven representative miRNAs were verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis, which produced results consistent with those of the deep sequencing method. Moreover, we also performed RT-qPCR analysis to verify the expression levels of 13 target genes and the cleavage site of 5 target genes by known or novel miRNAs were validated experimentally by 5' RACE. Additionally, a miRNA-mediated gene regulatory network for H2O2 stress response was constructed. Our study identifies a set of H2O2-responsive miRNAs and their target genes and reveals the mechanism of oxidative stress response and defense at the post-transcriptional regulatory level.

Keywords: Bd21; H2O2 stress; high-throughput sequencing; microRNA; regulatory network.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Length distribution of sRNAs detected in the control library and stress library. (A) Redundant sRNAs; (B) unique sRNAs.
Figure 2
Figure 2
Known and novel miRNAs differentially expressed between the CS library and TS library. (A) Known miRNAs; (B) novel miRNAs.
Figure 3
Figure 3
GO enrichment of the H2O2-responsive miRNA target genes. The dataset containing protein sequences of B. distachyon genome was set as the background dataset. The vertical axis is the enriched GO category, and the horizontal axis is GO enrichment.
Figure 4
Figure 4
A miRNA-mediated H2O2-responsive regulatory network. Triangles represent the differentially expressed miRNAs and the color gradient shows the fold change (red: upregulation; green: downregulation). Blue circles represent the target genes of differentially expressed miRNAs; yellow circles represent target genes that encode transcription factors.
Figure 5
Figure 5
RT-qPCR validation of the miRNAs. Blue bar: relative gene expression level in the control library. Red bar: relative gene expression level in the H2O2 stress library. The data are derived from three biological repeats and represent mean ± standard deviation (n = 3). “*” and “**” indicate significant difference at P < 0.05 and 0.01 level, respectively.
Figure 6
Figure 6
RT-qPCR analysis of the miRNA target genes. The Actin and SamDC genes were served as the endogenous controls. Blue bar: relative gene expression level in the control library. Red bar: relative gene expression level in the H2O2 stress library. The data are derived from three biological repeats and represent mean ± standard deviation (n = 3). “*” and “**” indicate significant difference at P < 0.05 and 0.01 level, respectively.
Figure 7
Figure 7
Validation of known and novel miRNAs by RLM-5′-RACE. Each top strand represents the miRNA complementary site on target mRNA, and each bottom strand represents the miRNA. Watson-Crick pairing (vertical dashes) and G:U wobble pairing (circles) are indicated. The arrows indicated the cleavage sites of target genes, and the numbers showed the frequency of cloned 5′ RACE products.

References

    1. Achard P., Herr A., Baulcombe D. C., Harberd N. P. (2004). Modulation of floral development by a gibberellin-regulated microRNA. Development 131, 3357–3365. 10.1242/dev.01206 - DOI - PubMed
    1. Addo-Quaye C., Eshoo T. W., Bartel D. P., Axtell M. J. (2008). Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr. Biol. 18, 758–762. 10.1016/j.cub.2008.04.042 - DOI - PMC - PubMed
    1. Allen E., Xie Z., Gustafson A. M., Carrington J. C. (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221. 10.1016/j.cell.2005.04.004 - DOI - PubMed
    1. Alonso-Peral M. M., Li J., Li Y., Allen R. S., Schnippenkoetter W., Ohms S., et al. . (2010). The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol. 154, 757–771. 10.1104/pp.110.160630 - DOI - PMC - PubMed
    1. Apel K., Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399. 10.1146/annurev.arplant.55.031903.141701 - DOI - PubMed

LinkOut - more resources