Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jan 1;22(5):854-872.
doi: 10.2741/4521.

Mitochondria in the pathophysiology of Alzheimer's and Parkinson's diseases

Affiliations
Free article
Review

Mitochondria in the pathophysiology of Alzheimer's and Parkinson's diseases

Isaac G Onyango et al. Front Biosci (Landmark Ed). .
Free article

Abstract

Mitochondria are responsible for the majority of energy production in energy-intensive tissues like brain, modulate Ca+2 signaling and control initiation of cell death. Because of their extensive use of oxygen and lack of protective histone proteins, mitochondria are vulnerable to oxidative stress (ROS)-induced damage to their genome (mtDNA), respiratory chain proteins and ROS repair enzymes. Animal and cell models of PD use toxins that impair mitochondrial complex I activity. Maintenance of mitochondrial mass, mitochondrial biogenesis (mitobiogenesis), particularly in high-energy brain, occurs through complex signaling pathways involving the upstream "master regulator" PGC-1alpha that is transcriptionally and post-translationally regulated. Alzheimer disease (AD) and Parkinson disease (PD) brains have reduced respiratory capacity and impaired mitobiogenesis, which could result in beta-amyloid plaques and neurofibrillary tangles. Aggregated proteins in genetic and familial AD and PD brains impair mitochondrial function, and mitochondrial dysfunction is involved in activated neuroinflammation. Mitochondrial ROS can activate signaling pathways that mediate cell death in neurodegenerative diseases. The available data support restoration of mitochondrial function to reduce disease progression and restore lost neuronal function in AD and PD.

PubMed Disclaimer

LinkOut - more resources