Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016;1(6):53-57.
doi: 10.29245/2572.942x/2016/6.1059.

Primary age-related tauopathy and the amyloid cascade hypothesis: the exception that proves the rule?

Affiliations

Primary age-related tauopathy and the amyloid cascade hypothesis: the exception that proves the rule?

John F Crary. J Neurol Neuromedicine. 2016.

Abstract

Extensive data supports the amyloid cascade hypothesis, which states that Alzheimer's disease (AD) stems from neurotoxic forms of the amyloid-beta (Aβ) peptide. But the poor correlation between Aβ plaques and neurodegeneration/cognitive impairment, the spaciotemporal disparity between Aβ and tau pathology, and the disappointing results following several large clinical trials using Aβ-targeting agents are inconsistent with this explanation. The most perplexing inconsistency is the existence of AD-type dementia patients that develop abundant neurofibrillary tangles that are indistinguishable from those in early to moderate-stage AD in the absence of compelling evidence of amyloid toxicity. This neuropathological phenotype, which is distinct from other diseases with tangles, represents a conceptual disconnect, because it does not fall within any previously established category of tauopathy and ostensibly invalidates the amyloid cascade hypothesis. Instead, recent efforts have led to consensus criteria for a new alternative diagnostic category, which presupposes that these tangle-only dementia patients represent extreme examples of a distinct primary age-related tauopathy (PART) that is universally observed, albeit to varying degrees, in the aging brain. The cause of PART is unknown, but sufficient evidence exists to hypothesize that it stems from an Aβ-independent mechanism, such as mechanical injury. Should the PART hypothesis withstand further experimental testing, it would represent a shift in the way a subset of subjects with AD neuropathological change are classified and has the potential to focus and reaffirm the amyloid cascade hypothesis.

PubMed Disclaimer

References

    1. Cipriani G, Dolciotti C, Picchi L, Bonuccelli U. Alzheimer and his disease: a brief history. Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology. 2011;32(2):275–9. doi: 10.1007/s10072-010-0454-7. Epub 2010/12/15. PubMed PMID: 21153601. - DOI - PubMed
    1. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184–5. Epub 1992/04/10. PubMed PMID: 1566067. - PubMed
    1. Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature. 1991;349(6311):704–6. doi: 10.1038/349704a0. PubMed PMID: 1671712. - DOI - PubMed
    1. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 1995;375(6534):754–60. doi: 10.1038/375754a0. PubMed PMID: 7596406. - DOI - PubMed
    1. Levy-Lahad E, Wasco W, Poorkaj P, Romano DM, Oshima J, Pettingell WH, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science. 1995;269(5226):973–7. PubMed PMID: 7638622. - PubMed

LinkOut - more resources