Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Dec;17(18):2461-2470.
doi: 10.1080/14656566.2016.1258063.

Dopamine depleters in the treatment of hyperkinetic movement disorders

Affiliations
Review

Dopamine depleters in the treatment of hyperkinetic movement disorders

Joseph Jankovic. Expert Opin Pharmacother. 2016 Dec.

Abstract

Abnormal involuntary movements often improve in response to anti-dopaminergic drugs. In contrast to classic neuroleptics that block dopamine receptors, drugs that deplete presynaptic dopamine by blocking vesicular monoamine transporter type 2 (VMAT2) seem to be safer and have little or no risk of tardive dyskinesia. This is one reason why there has been a recent emergence of novel VMAT2 inhibitors. Areas covered: Since the approval of tetrabenazine, the classic VMAT2 inhibitor, in the treatment of chorea associated with Huntington disease (HD), other VMAT2 inhibitors (e.g. deutetrabenazine and valbenazine) have been studied in the treatment of HD-related chorea, tardive dyskinesia and tics associated with Tourette syndrome. This review, based largely on a detailed search of PubMed, will summarize the pharmacology and clinical experience with the various VMAT2 inhibitors. Expert commentary: Because of differences in pharmacology and pharmacokinetics these new VMAT2 inhibitors promise to be at least as effective as tetrabenazine but with a lower risk of adverse effects, such as sedation, insomnia, depression, parkinsonism, and akathisia.

Keywords: Deutetrabenazine; Huntington disease; Tourette syndrome; VMAT2; chorea; dopamine; hyperkinetic movements; orphan drug; tardive dyskinesia; tetrabenazine; valbenazine; vesicular monoamine transporter.

PubMed Disclaimer

MeSH terms

LinkOut - more resources