Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Oct 24:7:380.
doi: 10.3389/fphar.2016.00380. eCollection 2016.

A Snapshot on the On-Label and Off-Label Use of the Interleukin-1 Inhibitors in Italy among Rheumatologists and Pediatric Rheumatologists: A Nationwide Multi-Center Retrospective Observational Study

Affiliations

A Snapshot on the On-Label and Off-Label Use of the Interleukin-1 Inhibitors in Italy among Rheumatologists and Pediatric Rheumatologists: A Nationwide Multi-Center Retrospective Observational Study

Antonio Vitale et al. Front Pharmacol. .

Abstract

Background: Interleukin (IL)-1 inhibitors have been suggested as possible therapeutic options in a large number of old and new clinical entities characterized by an IL-1 driven pathogenesis. Objectives: To perform a nationwide snapshot of the on-label and off-label use of anakinra (ANA) and canakinumab (CAN) for different conditions both in children and adults. Methods: We retrospectively collected demographic, clinical, and therapeutic data from both adult and pediatric patients treated with IL-1 inhibitors from January 2008 to July 2016. Results: Five hundred and twenty-six treatment courses given to 475 patients (195 males, 280 females; 111 children and 364 adults) were evaluated. ANA was administered in 421 (80.04%) courses, CAN in 105 (19.96%). Sixty-two (32.1%) patients had been treated with both agents. IL-1 inhibitors were employed in 38 different indications (37 with ANA, 16 with CAN). Off-label use was more frequent for ANA than CAN (p < 0.0001). ANA was employed as first-line biologic approach in 323 (76.7%) cases, while CAN in 37 cases (35.2%). IL-1 inhibitors were associated with corticosteroids in 285 (54.18%) courses and disease modifying anti-rheumatic drugs (DMARDs) in 156 (29.65%). ANA dosage ranged from 30 to 200 mg/day (or 1.0-2.0 mg/kg/day) among adults and 2-4 mg/kg/day among children; regarding CAN, the most frequently used posologies were 150mg every 8 weeks, 150mg every 4 weeks and 150mg every 6 weeks. The frequency of failure was higher among patients treated with ANA at a dosage of 100 mg/day than those treated with 2 mg/kg/day (p = 0.03). Seventy-six patients (14.4%) reported an adverse event (AE) and 10 (1.9%) a severe AE. AEs occurred more frequently after the age of 65 compared to both children and patients aged between 16 and 65 (p = 0.003 and p = 0.03, respectively). Conclusions: IL-1 inhibitors are mostly used off-label, especially ANA, during adulthood. The high frequency of good clinical responses suggests that IL-1 inhibitors are used with awareness of pathogenetic mechanisms; adult healthcare physicians generally employ standard dosages, while pediatricians are more prone in using a weight-based posology. Dose adjustments and switching between different agents showed to be effective treatment strategies. Our data confirm the good safety profile of IL-1 inhibitors.

Keywords: anakinra; autoinflammatory disorders; canakinumab; interleukin (IL)-1; treatment.

PubMed Disclaimer

Figures

Figure 1
Figure 1
On-label and off-label use of Anakinra (A) and Canakinumab (B). CAPS, Cryopyrin-Associated Periodic Syndrome; RA, rheumatoid arthritis; SOJA, Systemic Onset Juvenile Idiopathic Arthritis.
Figure 2
Figure 2
Use of concomitant therapies during IL-1 inhibition on the whole of treatment courses. DMARDs, disease modifying antirheumatic drugs; GCC, glucocorticosteroids; IL-1-INH, IL-1 inhibitors.
Figure 3
Figure 3
Use of concomitant therapies during IL-1 inhibition distinguishing by different indications. AOSD, Adult Onset Still's Disease; BD, Behçet's Disease; CAPS, Cryopyrin-Associated Periodic Syndrome; CRMO, Chronic Recurrent Multifocal Osteomyelitis; FMF, Familial Mediterranean Fever; IRAP, Idiopathic Recurrent Acute Pericarditis; RA, Rheumatoid Arthritis; SOJA, Systemic Onset Juvenile Idiopathic Arthritis; TRAPS, Tumor Necrosis Factor Receptor-Associated Periodic Syndrome; USAID, Undifferentiated Systemic AutoInflammatory Disease.
Figure 4
Figure 4
Frequency of administration for different dosages employed with Anakinra (A) and Canakinumab (B).
Figure 5
Figure 5
First-line employment of Anakinra and Canakinumab in different indications differentiating between pediatric (A) and adult patients (B). AOSD, Adult Onset Still's Disease; BD, Behçet's Disease; CAPS, Cryopyrin-Associated Periodic Syndrome; CRMO, Chronic Recurrent Multifocal Osteomyelitis; FMF, Familial Mediterranean Fever; IRAP, Idiopathic Recurrent Acute Pericarditis; RA, Rheumatoid Arthritis; SOJA, Systemic Onset Juvenile Idiopathic Arthritis; TRAPS, Tumor Necrosis Factor Receptor-Associated Periodic Syndrome; USAID, Undifferentiated Systemic AutoInflammatory Disease.
Figure 6
Figure 6
Amount of specific disease modifying antirheumatic drugs/corticosteroids (A) and biologic agents (B) previously administered. ABA, abatacept; ADA, adalimumab; AZA, azathioprine; COL, colchicine; CycA, cyclosporine A; CZP, certolizumab pegol; INX, infliximab; ETN, etanercept; GCC, glucocorticoids; GOL, golimumab; HCQ, hydroxychloroquine; LFN, leflunomide; MTX, methotrexate; RTX, rituximab; SSZ, sulfasalazine; TCZ, tocilizumab.
Figure 7
Figure 7
Frequency of disease modifying antirheumatic drugs (DMARDs) concomitantly administered with Anakinra (A) and Canakinumab (B). DMARDs, disease modifying antirheumatic drugs.
Figure 8
Figure 8
Frequency of adverse events in patients undergoing Anakinra.
Figure 9
Figure 9
Number of patients undergoing an increase or decrease of IL-1 INH dosage with related clinical outcome.
Figure 10
Figure 10
Reasons for discontinuation distinguishing between Anakinra (A) and Canakinumab (B).

References

    1. Abbate A., Van Tassell B. W., Biondi-Zoccai G., Kontos M. C., Grizzard J. D., Spillman D. W., et al. . (2013). Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am. J. Cardiol. 111, 1394–1400. 10.1016/j.amjcard.2013.01.287 - DOI - PMC - PubMed
    1. Alten R., Gomez-Reino J., Durez P., Beaulieu A., Sebba A., Krammer G., et al. . (2011). Efficacy and safety of the human anti-IL-1β monoclonal antibody canakinumab in rheumatoid arthritis: results of a 12-week, Phase, I. I., dose-finding study. BMC Musculoskelet. Disord. 12:153. 10.1186/1471-2474-12-153 - DOI - PMC - PubMed
    1. Annicchiarico G., Lopalco G., Morgese M. G., Cantarini L., Iannone F. (2016). Canakinumab in recessive dystrophic epidermolysis bullosa: a novel unexpected weapon for non-healing wounds? Clin. Exp. Rheumatol. 34, 961–962. - PubMed
    1. Banerjee M., Saxena M. (2012). Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes. Clin. Chim. Acta 413, 1163–1170. 10.1016/j.cca.2012.03.021 - DOI - PubMed
    1. Baskar S., Klein A. L., Zeft A. (2016). The use of IL-1 receptor antagonist (anakinra) in idiopathic recurrent pericarditis: a narrative review. Cardiol. Res. Pract. 2016:7840724. 10.1155/2016/7840724 - DOI - PMC - PubMed