Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 Sep;257(3 Pt 1):C451-60.
doi: 10.1152/ajpcell.1989.257.3.C451.

Participation of Ca currents in colonic electrical activity

Affiliations

Participation of Ca currents in colonic electrical activity

P D Langton et al. Am J Physiol. 1989 Sep.

Abstract

Canine colonic myocytes were studied with the whole cell patch-clamp technique. In 1.8 mM Ca2+, inward currents were evoked by depolarization. Currents activated positive to -50 mV, peaked at approximately 0 mV, and reversed at approximately +50 mV. Inward current was potentiated by high external Ca2+ concentration and BAY K8644 and was decreased by low external Ca2+, nifedipine, and Mn2+, indicating that the current was carried by Ca2+. Overlap of the activation-inactivation properties indicated a "window current" range (-40 to -20 mV) in which inward current might be sustained for long durations at potentials achieved during electrical slow waves. Voltage-clamp protocols simulating physiological depolarizations elicited sustained inward currents. Maximum changes in intracellular Ca2+ resulting from sustained inward currents were calculated, which suggested that depolarizations at the level of slow waves may increase cell Ca2+ sufficiently to cause contraction. The data suggest that electrical slow waves in colonic myocytes are due in part to inward Ca current. This current appears to be sufficient to explain the relationship between slow waves and contractions and provides an explanation for the mechanical threshold in colonic muscles.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources