Cedratvirus, a Double-Cork Structured Giant Virus, is a Distant Relative of Pithoviruses
- PMID: 27827884
- PMCID: PMC5127014
- DOI: 10.3390/v8110300
Cedratvirus, a Double-Cork Structured Giant Virus, is a Distant Relative of Pithoviruses
Abstract
Most viruses are known for the ability to cause symptomatic diseases in humans and other animals. The discovery of Acanthamoeba polyphaga mimivirus and other giant amoebal viruses revealed a considerable and previously unknown area of uncharacterized viral particles. Giant viruses have been isolated from various environmental samples collected from very distant geographic places, revealing a ubiquitous distribution. Their morphological and genomic features are fundamental elements for classifying them. Herein, we report the isolation and draft genome of Cedratvirus, a new amoebal giant virus isolated in Acanthamoeba castellanii, from an Algerian environmental sample. The viral particles are ovoid-shaped, resembling Pithovirus sibericum, but differing notably in the presence of two corks at each extremity of the virion. The draft genome of Cedratvirus-589,068 base pairs in length-is a close relative of the two previously described pithoviruses, sharing 104 and 113 genes with P. sibericum and Pithovirus massiliensis genomes, respectively. Interestingly, analysis of these viruses' core genome reveals that only 21% of Cedratvirus genes are involved in best reciprocal hits with the two pithoviruses. Phylogeny reconstructions and comparative genomics indicate that Cedratvirus is most closely related to pithoviruses, and questions their membership in an enlarged putative Pithoviridae family.
Keywords: Acanthamoeba; Cedratvirus; Pithovirus; co-culture; double-cork; giant viruses; viral family.
Conflict of interest statement
The authors declare no conflicts of interest.
Figures
References
-
- Boyer M., Yutin N., Pagnier I., Barrassi L., Fournous G., Espinosa L., Robert C., Azza S., Sun S., Rossmann M.G., et al. Giant Marseillevirus highlights the role of amoebae as a melting pot in emergence of chimeric microorganisms. Proc. Natl. Acad. Sci. USA. 2009;106:21848–21853. doi: 10.1073/pnas.0911354106. - DOI - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
