Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016;32(11):1151-1158.
doi: 10.2116/analsci.32.1151.

Integrin-independent Cell Adhesion Substrates: Possibility of Applications for Mechanobiology Research

Affiliations
Free article
Review

Integrin-independent Cell Adhesion Substrates: Possibility of Applications for Mechanobiology Research

Takashi Hoshiba et al. Anal Sci. 2016.
Free article

Abstract

Cells can mainly sense mechanical cues from the extracellular matrix via integrins. Because mechanical cues can strongly influence cellular functions, understanding the roles of integrins in the sensing of mechanical cues is a key for the achievement of tissue engineering. The analyses to determine the roles of integrins in the sensing of mechanical cues have been performed by many methods based on molecular- and cell-biological techniques, atomic force microscopy, and optical tweezers. Integrin-dependent cell adhesion substrates have been also used for this purpose. Additionally, the cells can adhere on several substrates via integrin-independent mechanisms. There are two types of integrin-independent cell adhesion substrates; 1) the substrates immobilized with ligands against the receptors on cell surface and 2) the substrates suppressing protein adsorption. Cells can exhibit specific functions on these substrates. Here, the examples of integrin-independent cell adhesion substrates were reviewed, and their possible applications in mechanobiology research are discussed.

PubMed Disclaimer

LinkOut - more resources