Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2017 Apr;54(4):288-296.
doi: 10.1136/jmedgenet-2016-104178. Epub 2016 Nov 10.

Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study

Affiliations
Clinical Trial

Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study

Derralynn A Hughes et al. J Med Genet. 2017 Apr.

Erratum in

Abstract

Background: Fabry disease is an X-linked lysosomal storage disorder caused by GLA mutations, resulting in α-galactosidase (α-Gal) deficiency and accumulation of lysosomal substrates. Migalastat, an oral pharmacological chaperone being developed as an alternative to intravenous enzyme replacement therapy (ERT), stabilises specific mutant (amenable) forms of α-Gal to facilitate normal lysosomal trafficking.

Methods: The main objective of the 18-month, randomised, active-controlled ATTRACT study was to assess the effects of migalastat on renal function in patients with Fabry disease previously treated with ERT. Effects on heart, disease substrate, patient-reported outcomes (PROs) and safety were also assessed.

Results: Fifty-seven adults (56% female) receiving ERT (88% had multiorgan disease) were randomised (1.5:1), based on a preliminary cell-based assay of responsiveness to migalastat, to receive 18 months open-label migalastat or remain on ERT. Four patients had non-amenable mutant forms of α-Gal based on the validated cell-based assay conducted after treatment initiation and were excluded from primary efficacy analyses only. Migalastat and ERT had similar effects on renal function. Left ventricular mass index decreased significantly with migalastat treatment (-6.6 g/m2 (-11.0 to -2.2)); there was no significant change with ERT. Predefined renal, cardiac or cerebrovascular events occurred in 29% and 44% of patients in the migalastat and ERT groups, respectively. Plasma globotriaosylsphingosine remained low and stable following the switch from ERT to migalastat. PROs were comparable between groups. Migalastat was generally safe and well tolerated.

Conclusions: Migalastat offers promise as a first-in-class oral monotherapy alternative treatment to intravenous ERT for patients with Fabry disease and amenable mutations.

Trial registration number: NCT00925301; Pre-results.

Trial registration: ClinicalTrials.gov NCT01218659.

Keywords: Fabry disease; Pharmacological chaperone; enzyme replacement therapy; lyso-Gb3; lysosomal storage disorder.

PubMed Disclaimer

Conflict of interest statement

Competing interests: JB, ERB, JPC, NSk, FJ, JK, CV and JY report being employed by Amicus Therapeutics and owning shares; DJL and PB are former employees of Amicus Therapeutics; CB is a former contractor of Amicus Therapeutics; JPC and DJL report issued patents without royalties related to this study. DGB, DPG, DD, PD, UF-R, OG-A, DAH, AJ, EL, RS, SPS, and WRW report personal fees from Amicus Therapeutics, outside the submitted work. WRW reports receiving fees from Genzyme, Shire and Protalix. KN reports receiving fees from Shire and Genzyme. SPS reports receiving fees from Shire, Biomarin, Protalix and Genzyme. TO reports receiving fees from Genzyme and Dainippon Sumitomo. RL reports receiving fees from Genzyme. AJ reports receiving fees from Genzyme and Shire. OG-A reports receiving fees from Genzyme, Shire and Pfizer. DAH reports receiving fees from Genzyme, Shire and Protalix. UF-R reports receiving fees from Shire and Genzyme.

Figures

Figure 1
Figure 1
Study design and patient disposition. ERT, enzyme replacement therapy; OLE, open-label extension.

References

    1. Brady RO, Gal AE, Bradley RM, Martensson E, Warshaw AL, Laster L. Enzymatic defect in Fabry's disease. Ceramidetrihexosidase deficiency. N Engl J Med 1967;276:1163–7. 10.1056/NEJM196705252762101 - DOI - PubMed
    1. Germain DP. Fabry disease. Orphanet J Rare Dis 2010;5:30 10.1186/1750-1172-5-30 - DOI - PMC - PubMed
    1. Fan JQ, Ishii S, Asano N, Suzuki Y. Accelerated transport and maturation of lysosomal a-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med 1999;5:112–15. 10.1038/4801 - DOI - PubMed
    1. Khanna R, Soska R, Lun Y, Feng J, Frascella M, Young B, Brignol N, Pellegrino L, Sitaraman SA, Desnick RJ, Benjamin ER, Lockhart DJ, Valenzano KJ. The pharmacological chaperone 1-deoxygalactonojirimycin reduces tissue globotriaosylceramide levels in a mouse model of Fabry disease. Mol Ther 2010;18:23–33. 10.1038/mt.2009.220 - DOI - PMC - PubMed
    1. Benjamin ER, Flanagan JJ, Schilling A, Chang HH, Agarwal L, Katz E, Wu X, Pine C, Wustman B, Desnick RJ, Lockhart DJ, Valenzano KJ. The pharmacological chaperone 1-deoxygalactonojirimycin increases alpha-galactosidase A levels in Fabry patient cell lines. J Inherit Metab Dis 2009;32:424–40. 10.1007/s10545-009-1077-0 - DOI - PubMed

Publication types

MeSH terms

Associated data