Cytokine-Like 1 Regulates Cardiac Fibrosis via Modulation of TGF-β Signaling
- PMID: 27835665
- PMCID: PMC5105950
- DOI: 10.1371/journal.pone.0166480
Cytokine-Like 1 Regulates Cardiac Fibrosis via Modulation of TGF-β Signaling
Abstract
Cytokine-like 1 (Cytl1) is a secreted protein that is involved in diverse biological processes. A comparative modeling study indicated that Cytl1 is structurally and functionally similar to monocyte chemoattractant protein 1 (MCP-1). As MCP-1 plays an important role in cardiac fibrosis (CF) and heart failure (HF), we investigated the role of Cytl1 in a mouse model of CF and HF. Cytl1 was upregulated in the failing mouse heart. Pressure overload-induced CF was significantly attenuated in cytl1 knock-out (KO) mice compared to that from wild-type (WT) mice. By contrast, adeno-associated virus (AAV)-mediated overexpression of cytl1 alone led to the development of CF in vivo. The endothelial-mesenchymal transition (EndMT) and the transdifferentiation of fibroblasts (FBs) to myofibroblasts (MFBs) have been suggested to contribute considerably to CF. Adenovirus-mediated overexpression of cytl1 was sufficient to induce these two critical CF-related processes in vitro, which were completely abrogated by co-treatment with SB-431542, an antagonist of TGF-β receptor 1. Cytl1 induced the expression of TGF-β2 both in vivo and in vitro. Antagonizing the receptor for MCP-1, C-C chemokine receptor type 2 (CCR2), with CAS 445479-97-0 did not block the pro-fibrotic activity of Cytl1 in vitro. Collectively, our data suggest that Cytl1 plays an essential role in CF likely through activating the TGF-β-SMAD signaling pathway. Although the receptor for Cyt1l remains to be identified, Cytl1 provides a novel platform for the development of anti-CF therapies.
Conflict of interest statement
The authors have no conflicts of interest to declare.
Figures






References
-
- Weber KT. Fibrosis and hypertensive heart disease. Curr Opin Cardiol. 2000;15(4):264–72. Epub 2001/01/04. . - PubMed
-
- de Bakker JM, van Capelle FJ, Janse MJ, Tasseron S, Vermeulen JT, de Jonge N, et al. Fractionated electrograms in dilated cardiomyopathy: origin and relation to abnormal conduction. J Am Coll Cardiol. 1996;27(5):1071–8. Epub 1996/04/01. 0735 1097(95)00612-5 [pii] 10.1016/0735-1097(95)00612-5 . - DOI - PubMed
-
- Spach MS, Boineau JP. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias. Pacing Clin Electrophysiol. 1997;20(2 Pt 2):397–413. Epub 1997/02/01. . - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases