Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Feb 1:2:3.
doi: 10.1186/s40942-016-0026-y. eCollection 2016.

Fusion proteins for treatment of retinal diseases: aflibercept, ziv-aflibercept, and conbercept

Affiliations
Review

Fusion proteins for treatment of retinal diseases: aflibercept, ziv-aflibercept, and conbercept

João Rafael de Oliveira Dias et al. Int J Retina Vitreous. .

Abstract

In the last few years, monoclonal antibodies have revolutionized the treatment of retinal neovascular diseases. More recently, a different class of drugs, fusion proteins, has provided an alternative treatment strategy with pharmacological differences. In addition to commercially available aflibercept, two other drugs, ziv-aflibercept and conbercept, have been studied in antiangiogenic treatment of ocular diseases. In this scenario, a critical review of the currently available data regarding fusion proteins in ophthalmic diseases may be a timely and important contribution. Aflibercept, previously known as VEGF Trap Eye, is a fusion protein of VEGF receptors 1 and 2 and a treatment for several retinal diseases related to angiogenesis. It has firmly joined ranibizumab and bevacizumab as an important therapeutic option in the management of neovascular AMD-, DME- and RVO-associated macular edema. Ziv-aflibercept, a systemic chemotherapeutic agent approved for the treatment of metastatic colorectal cancer, has recently drawn attention because of its potential for intravitreal administration, since it was not associated with ERG-related signs of toxicity in an experimental study and in human case reports. Conbercept is a soluble receptor decoy that blocks all isoforms of VEGF-A, VEGF-B, VEGF-C, and PlGF, which has a high binding affinity for VEGF and a long half-life in vitreous. It has been studied in a phase three clinical trial and has shown efficacy and safety. This review discusses three fusion proteins that have been studied in ophthalmology, aflibercept, ziv-aflibercept and conbercept, with emphasis on their clinical application for the treatment of retinal diseases.

Keywords: Aflibercept; Conbercept; Fusion proteins; VEGF Trap Eye; Vascular endothelial growth factor (VEGF); Ziv-aflibercept.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Spectral-domain OCT 7 days after intravitreal injection of 0.05 mL of ziv-aflibercept (25 mg/mL) (a) or aflibercept (40 mg/mL) (b) in two rabbits’ right eye
Fig. 2
Fig. 2
Baseline color fundus image (a), fluorescein angiography (b) and SD-OCT (c) of the right eye of a patient presenting DME. a At baseline, hard exudates and diffuse intraretinal fluid are seen in the perifoveal area. b At baseline, diffuse hyperfluorescence due to leakage (especially supero-temporally) and hypofluorescence due to non-perfusion (infero-temporally) are seen in the perifoveal area. c Cystoid spaces and subretinal and intraretinal fluid are seen in the foveal and perifoveal area
Fig. 3
Fig. 3
Color fundus image (a) fluorescein angiography (b) and SD-OCT (c) of the right eye of the same patient shown in Fig. 2. 4 weeks after the 3rd monthly injection of ziv-aflibercept. a 4 weeks after the third ziv-aflibercept injection, a decrease of intraretinal fluid and hard exudates is noticed in the perifoveal area of the right eye. b 4 weeks after the third ziv-aflibercept injection, a decrease of leakage is seen in the perifoveal area of the right eye. c 4 weeks after the third ziv-aflibercept injection, a decrease in the subretinal and intraretinal fluid is noticed

References

    1. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25. doi: 10.1210/edrv.18.1.0287. - DOI - PubMed
    1. Zachary I. Vascular endothelial growth factor and anti-angiogenic peptides as therapeutic and investigational molecules. IDrugs. 2003;6:224–231. - PubMed
    1. Konerding MA. Ocular angiogenesis: translating preclinical indications to successful clinical development. Expert Opin Ther Targets. 2004;8(3):255–258. doi: 10.1517/14728222.8.3.255. - DOI - PubMed
    1. Glaser BM, D’Amore PA, Lutty GA, Fenselau AH, Michels RG, Patz A. Chemical mediators of intraocular neovascularization. Trans Ophthalmol Soc. 1980;100:369–373. - PubMed
    1. Kaiser PK. Antivascular endothelial growth factor agents and their development: therapeutic implications in ocular diseases. Am J Ophthalmol. 2006;142:660–668. doi: 10.1016/j.ajo.2006.05.061. - DOI - PubMed