Error-Correcting Output Codes in Classification of Human Induced Pluripotent Stem Cell Colony Images
- PMID: 27847810
- PMCID: PMC5101360
- DOI: 10.1155/2016/3025057
Error-Correcting Output Codes in Classification of Human Induced Pluripotent Stem Cell Colony Images
Abstract
The purpose of this paper is to examine how well the human induced pluripotent stem cell (hiPSC) colony images can be classified using error-correcting output codes (ECOC). Our image dataset includes hiPSC colony images from three classes (bad, semigood, and good) which makes our classification task a multiclass problem. ECOC is a general framework to model multiclass classification problems. We focus on four different coding designs of ECOC and apply to each one of them k-Nearest Neighbor (k-NN) searching, naïve Bayes, classification tree, and discriminant analysis variants classifiers. We use Scaled Invariant Feature Transformation (SIFT) based features in classification. The best accuracy (62.4%) is obtained with ternary complete ECOC coding design and k-NN classifier (standardized Euclidean distance measure and inverse weighting). The best result is comparable with our earlier research. The quality identification of hiPSC colony images is an essential problem to be solved before hiPSCs can be used in practice in large-scale. ECOC methods examined are promising techniques for solving this challenging problem.
Figures
Similar articles
-
Heuristic ternary error-correcting output codes via weight optimization and layered clustering-based approach.IEEE Trans Cybern. 2015 Feb;45(2):289-301. doi: 10.1109/TCYB.2014.2325603. Epub 2014 Jun 2. IEEE Trans Cybern. 2015. PMID: 25486660
-
On the decoding process in ternary error-correcting output codes.IEEE Trans Pattern Anal Mach Intell. 2010 Jan;32(1):120-34. doi: 10.1109/TPAMI.2008.266. IEEE Trans Pattern Anal Mach Intell. 2010. PMID: 19926903
-
Learning ECOC Code Matrix for Multiclass Classification with Application to Glaucoma Diagnosis.J Med Syst. 2016 Apr;40(4):78. doi: 10.1007/s10916-016-0436-2. Epub 2016 Jan 21. J Med Syst. 2016. PMID: 26798075
-
Human induced pluripotent stem cell and nanotechnology-based therapeutics.Cell Transplant. 2015;24(11):2185-95. doi: 10.3727/096368914X685113. Epub 2014 Oct 8. Cell Transplant. 2015. PMID: 25299513 Review.
-
Concise review: Induced pluripotent stem cells versus embryonic stem cells: close enough or yet too far apart?Stem Cells. 2012 Jan;30(1):33-41. doi: 10.1002/stem.700. Stem Cells. 2012. PMID: 22213481 Review.
Cited by
-
AI-organoid integrated systems for biomedical studies and applications.Bioeng Transl Med. 2024 Jan 20;9(2):e10641. doi: 10.1002/btm2.10641. eCollection 2024 Mar. Bioeng Transl Med. 2024. PMID: 38435826 Free PMC article. Review.
-
Application research of image classification algorithm based on deep learning in household garbage sorting.Heliyon. 2024 Apr 19;10(9):e29966. doi: 10.1016/j.heliyon.2024.e29966. eCollection 2024 May 15. Heliyon. 2024. PMID: 38694073 Free PMC article.
-
Sports activity (SA) recognition based on error correcting output codes (ECOC) and convolutional neural network (CNN).Heliyon. 2024 Mar 19;10(6):e28258. doi: 10.1016/j.heliyon.2024.e28258. eCollection 2024 Mar 30. Heliyon. 2024. PMID: 38545217 Free PMC article.
-
Longitudinal clustering analysis and prediction of Parkinson's disease progression using radiomics and hybrid machine learning.Quant Imaging Med Surg. 2022 Feb;12(2):906-919. doi: 10.21037/qims-21-425. Quant Imaging Med Surg. 2022. PMID: 35111593 Free PMC article.
-
A Predictive Model for Guillain-Barré Syndrome Based on Ensemble Methods.Comput Intell Neurosci. 2018 Nov 5;2018:1576927. doi: 10.1155/2018/1576927. eCollection 2018. Comput Intell Neurosci. 2018. PMID: 30532769 Free PMC article.
References
-
- Joutsijoki H., Haponen M., Rasku J., Aalto-Setälä K., Juhola M. Machine learning approach to automated quality identification of human induced pluripotent stem cell colony images. Computational and Mathematical Methods in Medicine. 2016;2016:15. doi: 10.1155/2016/3091039.3091039 - DOI - PMC - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials