Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 1989 May;97(5):715-24.

Comparison of myocardial temperatures with multidose cardioplegia versus single-dose cardioplegia and myocardial surface cooling during coronary artery bypass grafting

Affiliations
  • PMID: 2785234
Clinical Trial

Comparison of myocardial temperatures with multidose cardioplegia versus single-dose cardioplegia and myocardial surface cooling during coronary artery bypass grafting

P O Daily et al. J Thorac Cardiovasc Surg. 1989 May.

Abstract

Myocardial hypothermia with multidose cardioplegia has not been compared with single-dose cardioplegia and myocardial surface cooling with a cooling jacket in patients having coronary artery bypass grafting. In this study, 20 patients with three-vessel disease undergoing coronary bypass at 28 degrees C with bicaval cannulation, caval tapes, and pulmonary artery venting (4.9 +/- 0.7 grafts per patient) were prospectively randomized equally into group I (multidose cardioplegia) and group II (single-dose cardioplegia with a cooling jacket). The initial dose of cardioplegic solution was 1000 ml. Group I then received 500 ml of cardioplegic solution every 20 minutes, delivered into the aortic root and available grafts. In group II, after the cardioplegic solution had been administered, a cooling jacket covering the right and left ventricles was applied. In both groups temperatures were recorded every 30 seconds at five ventricular sites: (1) right ventricular epicardium; (2) right ventricular myocardium or cavity, 7 mm; (3) left ventricular epicardium; (4) left ventricular myocardium or cavity, 15 mm; and (5) septum, 20 mm. Group mean temperatures at each site at various times were compared within each group and between the two groups by analysis of variance. Aortic crossclamp time was 60.3 +/- 12.1 minutes in group I and 52.8 +/- 7.3 minutes in group II (p = 0.12); cardiopulmonary bypass time was 103.7 +/- 11.1 minutes in group I versus 87.7 +/- 12.7 minutes in group II (p less than 0.01). One minute after the cardioplegic solution was initially given, temperatures between groups at each site were not statistically different, but left ventricular epicardial temperatures within both groups were significantly higher than in the other four sites. Nineteen minutes after administration of the cardioplegic solution, temperatures in group I at all sites were higher than in group II. Similarly, throughout the entire period of aortic crossclamping, mean temperatures (except left ventricular myocardial site), maximum temperatures, and percentage of time all temperatures were 15 degrees C or higher were greater in group I than in group II. The following conclusions can be reached: 1. Initial myocardial cooling with 1000 ml of cardioplegic solution is not significantly limited by coronary artery disease but is suboptimal (16 degrees or 17 degrees C) in the inferior left ventricular epicardium because of continual warming from the aorta and subdiaphragmatic viscera. 2. Without myocardial surface cooling, excessive external myocardial rewarming to 18 degrees to 22 degrees C occurs within 20 minutes at all sites after delivery of the cardioplegic solution.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources