Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Nov 2:10:493.
doi: 10.3389/fnins.2016.00493. eCollection 2016.

A Mouse Model for Binge-Level Methamphetamine Use

Affiliations

A Mouse Model for Binge-Level Methamphetamine Use

Shkelzen Shabani et al. Front Neurosci. .

Abstract

Binge/crash cycles of methamphetamine (MA) use are frequently reported by individuals suffering from MA use disorders. A MA binge is self-reported as multiple daily doses that commonly accumulate to 800 mg/day (~10 mg/kg/day for a 170 pound human). A genetic animal model with a similar vulnerability to binge-level MA intake is missing. We used selectively bred MA high drinking (MAHDR) and low drinking (MALDR) mouse lines to determine whether several procedural variations would result in binge-level MA intake. Data were also collected in two progenitor populations of the MA drinking lines, the DBA/2J (D2) strain and the F2 cross of the D2 and C57BL/6J strains. The impact of 3 factors was examined: (1) concentration of MA in the two-bottle choice procedure used for selective breeding; (2) ratio of bottles containing MA vs. water, and (3) length of the withdrawal (or abstinence) period between MA drinking sessions. When MA concentration was progressively increased every 4 days in 20 mg/l amounts from 20 to 140 mg/l, maximum intake in MALDR mice was 1.1 mg/kg, whereas MAHDR mice consumed as much as 14.6 mg/kg. When these concentrations were tested in a multiple bottle choice procedure, the highest ratio of MA to water bottles (3:1) was associated with escalated MA intake of up to 29.1 mg/kg in MAHDR mice and 12.0 mg/kg in F2 mice; MALDR mice did not show a ratio-dependent escalation in MA intake. Finally, MAHDR and D2 mice were offered 3 bottles of MA vs. water at increasing concentrations from 20 to 80 mg/l, and tested under an intermittent 6-h withdrawal period, which was lengthened to 30 h (D2 mice) or to 30 or 78 h (MAHDR). D2 and MAHDR mice initially consumed similar amounts of 14-16 mg/kg MA, but D2 mice reduced their MA intake 3-fold after introduction of 30-h abstinence periods, whereas MAHDR mice retained their high level of intake regardless of withdrawal period. MAHDR mice provide a genetic model of binge-level MA intake appropriate for the study of associated MA-induced neurobiological changes and pharmaceutical treatments.

Keywords: MAHDR; MALDR; abstinence; genetic; selected line; self-administration; voluntary consumption; withdrawal.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Design for Experiment 4. The control group had access to 4 water bottles (not shown), whereas the MA group had access to 3 MA bottles and 1 water bottle.
Figure 2
Figure 2
Design for Experiment 5. The control group had access to 4 water bottles (not shown), whereas the MA group had access to 3 MA bottles and 1 water bottle.
Figure 3
Figure 3
Increasing concentration of MA leads to binge-level MA intake in selectively bred MA high drinking (MAHDR) mice. (A) mean (± SEM) mg/kg/18 h MA consumed for MA concentrations offered for 4 days each and for each mouse line; B: mean (± SEM) total fluid consumed during the same 18-h periods for each MA concentration and mouse line. +p <0.001 for the difference between MAHDR and MALDR at each concentration; **p <0.01 compared to the next lower MA concentration.
Figure 4
Figure 4
A high MA bottle to water (H2O) bottle ratio (3MA:1H2O) increased MA intake in MAHDR, but not MALDR, mice. (A,B) Mean (±SEM) mg/kg/18 h MA consumed for each MA concentration, mouse line, and group; (C,D): Mean (±SEM) total fluid consumed during the same 18-h periods for each MA concentration, mouse line, and group. +p <0.01 compared to Group 4 at each MA concentration; *p <0.05, **p <0.01, ***p <0.001 compared to the next lower MA concentration for Group 4 only.
Figure 5
Figure 5
A high MA bottle to H2O bottle ratio (3MA:1H2O) increased MA intake in B6D2F2 (F2) mice. (A) Mean (±SEM) mg/kg/18 h MA consumed for each MA concentration and group; (B) Mean (±SEM) total fluid consumed during the same 18-h period for each MA concentration and group. *, #, and & indicate p <0.05 for Group 4 compared to Group 1, 2, or 3, respectively.
Figure 6
Figure 6
MA intake is reduced in D2 mice when the intermittent MA withdrawal period is lengthened from 6 to 30 h. (A) Mean (±SEM) mg/kg/18 h MA consumed during the MA drinking acquisition period; (B) Mean (±SEM) mg/kg/18 h MA consumed when access to 80 mg/l MA was separated by 30-h withdrawal (abstinence) periods; (C,D) Corresponding mean (±SEM) total fluid consumption for the MA and water only control groups. ***p <0.001, compared to the next lower MA concentration; ###p <0.001 for the main effect of Day.
Figure 7
Figure 7
MA intake remains high in MAHDR mice under multiple intermittent MA withdrawal periods. (A) Mean (±SEM) mg/kg/18 h MA consumed for each MA concentration and group, during the MA drinking acquisition period; (B) Mean (±SEM) mg/kg/18 h MA consumed when access to 80 mg/l MA was separated by 6-, 30-, or 78-h withdrawal (abstinence) periods; (C, D) Corresponding mean (±SEM) total fluid consumed. Note: Group 1, 6 h (□) is water control group. The MA drinking group 2–4 designations are based on the variable withdrawal length after day 12. See Figure 1 for group information. ***p <0.001, compared to the next lower MA concentration; +++p <0.001, Group 2–4 compared to Group 1.
Figure 8
Figure 8
MAHDR mice are variable in their peak MA intake and MA intake patterns across time. (A) Frequency of animals in bins of 5 mg/kg/18 h, with peak 80 mg/l MA intake level ≥ the value along the x-axis. The inset shows the distribution for D2 mice from Experiment 4 for comparison; (B) MA drinking patterns of 4 MAHDR mice from Group 2 of Experiment 5 illustrating variability in patterns of peaks and troughs in binge-level MA intake. Patterns for Group 2 animals are shown, because they were given daily MA access, whereas the other groups were given MA access every other day or every 3 days.

Similar articles

Cited by

References

    1. Belknap J. K., Richards S. P., O'Toole L. A., Helms M. L., Phillips T. J. (1997). Short-term selective breeding as a tool for QTL mapping: ethanol preference drinking in mice. Behav. Genet. 27, 55–66. 10.1023/A:1025615409383 - DOI - PubMed
    1. Carroll M. E., France C. P., Meisch R. A. (1979). Food deprivation increases oral and intravenous drug intake in rats. Science 205, 319–321. 10.1126/science.36665 - DOI - PubMed
    1. Carroll M. E., Stotz D. C. (1983). Oral d-amphetamine and ketamine self-administration by rhesus monkeys: effects of food deprivation. J. Pharmacol. Exp. Ther. 227, 28–34. - PubMed
    1. Cheng W. S., Garfein R. S., Semple S. J., Strathdee S. A., Zians J. K., Patterson T. L. (2010). Binge use and sex and drug use behaviors among HIV(–), heterosexual methamphetamine users in San Diego. Subst. Use Misuse 45, 116–133. 10.3109/10826080902869620 - DOI - PMC - PubMed
    1. Cho A. K., Melega W. P. (2002). Patterns of methamphetamine abuse and their consequences. J. Addict. Dis. 21, 21–34. 10.1300/J069v21n01_03 - DOI - PubMed

LinkOut - more resources