Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jun;101(6):754-762.
doi: 10.1002/cpt.562. Epub 2017 Jan 11.

Modeling Drug-Induced Neuropathy Using Human iPSCs for Predictive Toxicology

Affiliations

Modeling Drug-Induced Neuropathy Using Human iPSCs for Predictive Toxicology

R Ohara et al. Clin Pharmacol Ther. 2017 Jun.

Abstract

Drugs under development can cause unpredicted toxicity in humans due to differential drug responsiveness between humans and other disease models, resulting in clinical trial failures. Human induced pluripotent stem cells (iPSCs) are expected to represent a useful tool for toxicity testing. However, among many assays, appropriate cellular assays for predicting neurotoxicity in an iPSC-based model are still uncertain. Here we generated neurons from iPSCs of Charcot-Marie-Tooth disease (CMT) patients. Some CMT patients are sensitive to anticancer drugs and present with an adverse reaction of neuropathy. We analyzed cellular phenotypes and found that mitochondria in neurites of CMT neurons were morphologically shorter and showed slower mobility compared to control. A neurosphere assay showed that treatment with drugs known to cause neuropathy caused mitochondrial aggregations in neurites with adenosine triphosphate shortage in both CMT and control neurons, although more severely in CMT. These findings suggest that the genetically susceptible model could provide a useful tool to predict drug-induced neurotoxicity.

PubMed Disclaimer

MeSH terms

LinkOut - more resources