Regulation of mRNA turnover in cystic fibrosis lung disease
- PMID: 27863009
- DOI: 10.1002/wrna.1408
Regulation of mRNA turnover in cystic fibrosis lung disease
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, F508del-CFTR being the most frequent mutation. The CF lung is characterized by a hyperinflammatory phenotype and is regulated by multiple factors that coordinate its pathophysiology. In CF the expression of CFTR as well as proinflammatory genes are regulated at the level of messenger RNA (mRNA) stability, which subsequently affect translation. These mechanisms are mediated by inflammatory RNA-binding proteins as well as small endogenous noncoding microRNAs, in coordination with cellular signaling pathways. These regulatory factors exhibit altered expression and function in vivo in the CF lung, and play a key role in the pathophysiology of CF lung disease. In this review, we have described the role of mRNA stability and associated regulatory mechanisms in CF lung disease. WIREs RNA 2017, 8:e1408. doi: 10.1002/wrna.1408 For further resources related to this article, please visit the WIREs website.
© 2016 Wiley Periodicals, Inc.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
