Prediction and Prevention of Parasitic Diseases Using a Landscape Genomics Framework
- PMID: 27863902
- PMCID: PMC5376512
- DOI: 10.1016/j.pt.2016.10.008
Prediction and Prevention of Parasitic Diseases Using a Landscape Genomics Framework
Abstract
Substantial heterogeneity exists in the dispersal, distribution and transmission of parasitic species. Understanding and predicting how such features are governed by the ecological variation of landscape they inhabit is the central goal of spatial epidemiology. Genetic data can further inform functional connectivity among parasite, host and vector populations in a landscape. Gene flow correlates with the spread of epidemiologically relevant phenotypes among parasite and vector populations (e.g., virulence, drug and pesticide resistance), as well as invasion and re-invasion risk where parasite transmission is absent due to current or past intervention measures. However, the formal integration of spatial and genetic data ('landscape genetics') is scarcely ever applied to parasites. Here, we discuss the specific challenges and practical prospects for the use of landscape genetics and genomics to understand the biology and control of parasitic disease and present a practical framework for doing so.
Copyright © 2016 Elsevier Ltd. All rights reserved.
Figures
Similar articles
-
Multidisciplinary studies, systems approaches and parasite eco-epidemiology: something old, something new.Parasite. 2008 Sep;15(3):469-76. doi: 10.1051/parasite/2008153469. Parasite. 2008. PMID: 18814725 Review.
-
Parasite epidemiology in a changing world: can molecular phylogeography help us tell the wood from the trees?Parasitology. 2012 Dec;139(14):1924-38. doi: 10.1017/S0031182012001060. Epub 2012 Aug 24. Parasitology. 2012. PMID: 22917112 Review.
-
The molecular epidemiology of parasite infections: tools and applications.Mol Biochem Parasitol. 2012 Feb;181(2):102-16. doi: 10.1016/j.molbiopara.2011.10.006. Epub 2011 Oct 19. Mol Biochem Parasitol. 2012. PMID: 22027028 Review.
-
Coevolutionary interactions between host and parasite genotypes.Trends Parasitol. 2006 Jan;22(1):12-6. doi: 10.1016/j.pt.2005.11.008. Epub 2005 Nov 23. Trends Parasitol. 2006. PMID: 16310412
-
Plasticity in parasite phenotypes: evolutionary and ecological implications for disease.Future Microbiol. 2012 Jan;7(1):17-24. doi: 10.2217/fmb.11.134. Future Microbiol. 2012. PMID: 22191443 Review.
Cited by
-
Comparative landscape genetics reveals differential effects of environment on host and pathogen genetic structure in Tasmanian devils (Sarcophilus harrisii) and their transmissible tumour.Mol Ecol. 2020 Sep;29(17):3217-3233. doi: 10.1111/mec.15558. Epub 2020 Aug 2. Mol Ecol. 2020. PMID: 32682353 Free PMC article.
-
2b-RAD genotyping for population genomic studies of Chagas disease vectors: Rhodnius ecuadoriensis in Ecuador.PLoS Negl Trop Dis. 2017 Jul 19;11(7):e0005710. doi: 10.1371/journal.pntd.0005710. eCollection 2017 Jul. PLoS Negl Trop Dis. 2017. PMID: 28723901 Free PMC article.
-
Pathogens in space: Advancing understanding of pathogen dynamics and disease ecology through landscape genetics.Evol Appl. 2018 Jul 28;11(10):1763-1778. doi: 10.1111/eva.12678. eCollection 2018 Dec. Evol Appl. 2018. PMID: 30459828 Free PMC article. Review.
-
Genome-wide SNPs reveal the drivers of gene flow in an urban population of the Asian Tiger Mosquito, Aedes albopictus.PLoS Negl Trop Dis. 2017 Oct 18;11(10):e0006009. doi: 10.1371/journal.pntd.0006009. eCollection 2017 Oct. PLoS Negl Trop Dis. 2017. PMID: 29045401 Free PMC article.
-
Population genomics and geographic dispersal in Chagas disease vectors: Landscape drivers and evidence of possible adaptation to the domestic setting.PLoS Genet. 2022 Feb 4;18(2):e1010019. doi: 10.1371/journal.pgen.1010019. eCollection 2022 Feb. PLoS Genet. 2022. PMID: 35120121 Free PMC article.
References
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous