Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Multicenter Study
. 2017 Apr;24(2):210-217.
doi: 10.1177/1526602816677037. Epub 2016 Nov 19.

Feasibility and Technical Aspects of Proximal Nellix-in-Nellix Extension for Late Caudal Endograft Migration

Affiliations
Multicenter Study

Feasibility and Technical Aspects of Proximal Nellix-in-Nellix Extension for Late Caudal Endograft Migration

Esmé J Donselaar et al. J Endovasc Ther. 2017 Apr.

Abstract

Purpose: To describe the feasibility and technical aspects of a proximal Nellix-in-Nellix extension to treat caudal stent-graft migration after endovascular aneurysm sealing (EVAS) in the in vitro and in vivo settings.

Methods: In vitro studies were designed (1) to assess inner diameters of Nellix-in-Nellix extensions after postdilation with 12-mm balloons and (2) to test wall apposition in tubes with different diameters using a Nellix-in-Nellix stent-graft that extended out of the original Nellix stent-graft lumen by 10, 20, 30, and 40 mm. Simulated-use experiments were performed using silicone models in conjunction with a pulsatile flow pump. In the clinical setting, 5 patients (median age 74 years, range 73-83) presented at 2 centers with type Ia endoleak secondary to caudal Nellix stent-graft migration measuring a median 9 mm (range 7-15) on the left and 7 mm (range 0-11) on the right. Median polymer fill volume at the initial EVAS procedure was 42.5 mL (range 25-71). The median time to reintervention with a proximal Nellix extension was 15 months (range 13-32).

Results: In vitro, the inner diameters of the Nellix-in-Nellix extensions were consistent after postdilation. Cases with 10 and 20 mm of exposed endobag resulted in a poor seal with endoleak, while cases with 30 and 40 mm of exposed endobag length exhibited angiographic seal. Fill line pressures of the second Nellix were higher than expected. In the 5 clinical cases, chimney grafts were required in each case to create an adequate proximal landing zone. The Nellix-in-Nellix procedure was successful in all patients. There were no procedure-related complications, and no endoleaks were observed during a median 12-month follow-up. Reinterventions were performed in 2 patients because of in-stent stenosis and chimney graft compression, respectively.

Conclusion: Proximal Nellix-in-Nellix extension can be used to treat caudally migrated Nellix stent-grafts and to treat the consequent type Ia endoleak, but the technique differs from primary EVAS. The development of dedicated proximal extensions is desirable.

Keywords: Nellix-in-Nellix technique; aortic aneurysm; endograft; endoleak; endovascular aneurysm sealing; proximal extension; stent-graft migration.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources