Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jun:81:12-21.
doi: 10.1016/j.mcn.2016.11.005. Epub 2016 Nov 16.

Regulation of extrasynaptic signaling by polysialylated NCAM: Impact for synaptic plasticity and cognitive functions

Affiliations
Review

Regulation of extrasynaptic signaling by polysialylated NCAM: Impact for synaptic plasticity and cognitive functions

Hristo Varbanov et al. Mol Cell Neurosci. 2017 Jun.

Abstract

The activation of synaptic N-methyl-d-aspartate-receptors (NMDARs) is crucial for induction of synaptic plasticity and supports cell survival, whereas activation of extrasynaptic NMDARs inhibits long-term potentiation and triggers neurodegeneration. A soluble polysialylated form of the neural cell adhesion molecule (polySia-NCAM) suppresses signaling through peri-/extrasynaptic GluN2B-containing NMDARs. Genetic or enzymatic manipulations blocking this mechanism result in impaired synaptic plasticity and learning, which could be repaired by reintroduction of polySia, or inhibition of either GluN1/GluN2B receptors or downstream signaling through RasGRF1 and p38 MAP kinase. Ectodomain shedding of NCAM, and hence generation of soluble NCAM, is controlled by metalloproteases of a disintegrin and metalloprotease (ADAM) family. As polySia-NCAM is predominantly associated with GABAergic interneurons in the prefrontal cortex, it is noteworthy that EphrinA5/EphA3-induced ADAM10 activity promotes polySia-NCAM shedding in these neurons. Thus, in addition to the well-known regulation of synaptic NMDARs by the secreted molecule Reelin, shed polySia-NCAM may restrain activation of extrasynaptic NMDARs. These data support a concept that GABAergic interneuron-derived extracellular proteins control the balance in synaptic/extrasynaptic NMDAR-mediated signaling in principal cells. Strikingly, dysregulation of Reelin or polySia expression is linked to schizophrenia. Thus, targeting of the GABAergic interneuron-principle cell communication and restoring the balance in synaptic/extrasynaptic NMDARs represent promising strategies for treatment of psychiatric diseases.

Keywords: Hippocampus; LTP; Learning; NMDA receptor; PSA-NCAM; Polysialic acid; Schizophrenia; Synaptic plasticity; mPFC.

PubMed Disclaimer

LinkOut - more resources