Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2017 Jan;49(1):27-35.
doi: 10.1038/ng.3725. Epub 2016 Nov 21.

Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

Christian R Marshall  1 Daniel P Howrigan  2   3 Daniele Merico  1 Bhooma Thiruvahindrapuram  1 Wenting Wu  4   5 Douglas S Greer  4   5 Danny Antaki  4   5 Aniket Shetty  4   5 Peter A Holmans  6   7 Dalila Pinto  8   9 Madhusudan Gujral  4   5 William M Brandler  4   5 Dheeraj Malhotra  4   5   10 Zhouzhi Wang  1 Karin V Fuentes Fajarado  4   5 Michelle S Maile  4   5 Stephan Ripke  2   3 Ingrid Agartz  11   12   13 Margot Albus  14 Madeline Alexander  15 Farooq Amin  16   17 Joshua Atkins  18   19 Silviu A Bacanu  20 Richard A Belliveau Jr  3 Sarah E Bergen  3   21 Marcelo Bertalan  22   23 Elizabeth Bevilacqua  3 Tim B Bigdeli  20 Donald W Black  24 Richard Bruggeman  25 Nancy G Buccola  26 Randy L Buckner  27   28   29 Brendan Bulik-Sullivan  2   3 William Byerley  30 Wiepke Cahn  31 Guiqing Cai  8   32 Murray J Cairns  18   33   34 Dominique Campion  35 Rita M Cantor  36 Vaughan J Carr  33   37 Noa Carrera  6 Stanley V Catts  33   38 Kimberley D Chambert  3 Wei Cheng  39 C Robert Cloninger  40 David Cohen  41 Paul Cormican  42 Nick Craddock  6   7 Benedicto Crespo-Facorro  43   44 James J Crowley  45 David Curtis  46   47 Michael Davidson  48 Kenneth L Davis  8 Franziska Degenhardt  49   50 Jurgen Del Favero  51 Lynn E DeLisi  52   53 Dimitris Dikeos  54 Timothy Dinan  55 Srdjan Djurovic  11   56 Gary Donohoe  42   57 Elodie Drapeau  8 Jubao Duan  58   59 Frank Dudbridge  60 Peter Eichhammer  61 Johan Eriksson  62   63   64 Valentina Escott-Price  6 Laurent Essioux  65 Ayman H Fanous  66   67   68   69 Kai-How Farh  2 Martilias S Farrell  45 Josef Frank  70 Lude Franke  71 Robert Freedman  72 Nelson B Freimer  73 Joseph I Friedman  8 Andreas J Forstner  49   50 Menachem Fromer  2   3   74   75 Giulio Genovese  3 Lyudmila Georgieva  6 Elliot S Gershon  59   76 Ina Giegling  77   78 Paola Giusti-Rodríguez  45 Stephanie Godard  79 Jacqueline I Goldstein  2   80 Jacob Gratten  81 Lieuwe de Haan  82 Marian L Hamshere  6 Mark Hansen  83 Thomas Hansen  22   23 Vahram Haroutunian  8   84   85 Annette M Hartmann  77 Frans A Henskens  33   34   86 Stefan Herms  49   50   87 Joel N Hirschhorn  80   88   89 Per Hoffmann  49   50   87 Andrea Hofman  49   50 Hailiang Huang  2   80 Masashi Ikeda  90 Inge Joa  91 Anna K Kähler  21 René S Kahn  31 Luba Kalaydjieva  92   93 Juha Karjalainen  71 David Kavanagh  6 Matthew C Keller  94 Brian J Kelly  34 James L Kennedy  95   96   97 Yunjung Kim  45 James A Knowles  69   98 Bettina Konte  77 Claudine Laurent  15   99 Phil Lee  2   3   75 S Hong Lee  81 Sophie E Legge  6 Bernard Lerer  100 Deborah L Levy  53   101 Kung-Yee Liang  102 Jeffrey Lieberman  103 Jouko Lönnqvist  104 Carmel M Loughland  33   34 Patrik K E Magnusson  21 Brion S Maher  105 Wolfgang Maier  106 Jacques Mallet  107 Manuel Mattheisen  23   108   109   110 Morten Mattingsdal  11   111 Robert W McCarley  52   53 Colm McDonald  112 Andrew M McIntosh  113   114 Sandra Meier  70 Carin J Meijer  82 Ingrid Melle  11   115 Raquelle I Mesholam-Gately  53   116 Andres Metspalu  117 Patricia T Michie  33   118 Lili Milani  117 Vihra Milanova  119 Younes Mokrab  120 Derek W Morris  42   57 Bertram Müller-Myhsok  121   122   123 Kieran C Murphy  124 Robin M Murray  125 Inez Myin-Germeys  126 Igor Nenadic  127 Deborah A Nertney  128 Gerald Nestadt  129 Kristin K Nicodemus  130 Laura Nisenbaum  131 Annelie Nordin  132 Eadbhard O'Callaghan  133 Colm O'Dushlaine  3 Sang-Yun Oh  134 Ann Olincy  72 Line Olsen  22   23 F Anthony O'Neill  135 Jim Van Os  126   125 Christos Pantelis  33   136 George N Papadimitriou  54 Elena Parkhomenko  8 Michele T Pato  69   98 Tiina Paunio  137 Psychosis Endophenotypes International ConsortiumDiana O Perkins  138 Tune H Pers  80   89   139 Olli Pietiläinen  137   140 Jonathan Pimm  47 Andrew J Pocklington  6 John Powell  125 Alkes Price  80   141 Ann E Pulver  129 Shaun M Purcell  74 Digby Quested  142 Henrik B Rasmussen  22   23 Abraham Reichenberg  8   85 Mark A Reimers  20 Alexander L Richards  6   7 Joshua L Roffman  28   29 Panos Roussos  74   143 Douglas M Ruderfer  6   74 Veikko Salomaa  63 Alan R Sanders  58   59 Adam Savitz  144 Ulrich Schall  33   34 Thomas G Schulze  70   145 Sibylle G Schwab  146 Edward M Scolnick  3 Rodney J Scott  18   33   147 Larry J Seidman  53   116 Jianxin Shi  148 Jeremy M Silverman  8   149 Jordan W Smoller  3   75 Erik Söderman  13 Chris C A Spencer  150 Eli A Stahl  74   80 Eric Strengman  31   151 Jana Strohmaier  70 T Scott Stroup  103 Jaana Suvisaari  104 Dragan M Svrakic  40 Jin P Szatkiewicz  45 Srinivas Thirumalai  152 Paul A Tooney  18   33   34 Juha Veijola  153   154 Peter M Visscher  81 John Waddington  155 Dermot Walsh  156 Bradley T Webb  20 Mark Weiser  48 Dieter B Wildenauer  157 Nigel M Williams  6 Stephanie Williams  45 Stephanie H Witt  70 Aaron R Wolen  20 Brandon K Wormley  20 Naomi R Wray  81 Jing Qin Wu  18   33 Clement C Zai  95   96 Rolf Adolfsson  132 Ole A Andreassen  11   115 Douglas H R Blackwood  113 Elvira Bramon  158 Joseph D Buxbaum  8   32   85   159 Sven Cichon  49   50   87   160 David A Collier  120   161 Aiden Corvin  42 Mark J Daly  2   3   80 Ariel Darvasi  162 Enrico Domenici  10   163 Tõnu Esko  80   88   89   117 Pablo V Gejman  58   59 Michael Gill  42 Hugh Gurling  47 Christina M Hultman  21 Nakao Iwata  90 Assen V Jablensky  33   93   157   164 Erik G Jönsson  11   13 Kenneth S Kendler  20 George Kirov  6 Jo Knight  95   96   97 Douglas F Levinson  15 Qingqin S Li  144 Steven A McCarroll  3   88 Andrew McQuillin  47 Jennifer L Moran  3 Bryan J Mowry  81   128 Markus M Nöthen  49   50 Roel A Ophoff  31   36   73 Michael J Owen  6   7 Aarno Palotie  3   75   140 Carlos N Pato  69   98 Tracey L Petryshen  3   29   53   165 Danielle Posthuma  166   167   168 Marcella Rietschel  70 Brien P Riley  20 Dan Rujescu  77   78 Pamela Sklar  74   85   143 David St Clair  169 James T R Walters  6 Thomas Werge  22   23   170 Patrick F Sullivan  21   45   138 Michael C O'Donovan  6   7 Stephen W Scherer  1   171 Benjamin M Neale  2   3   75   80 Jonathan Sebat  4   5   172 CNV and Schizophrenia Working Groups of the Psychiatric Genomics Consortium
Affiliations
Comparative Study

Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

Christian R Marshall et al. Nat Genet. 2017 Jan.

Erratum in

Abstract

Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (odds ratio (OR) = 1.11, P = 5.7 × 10-15), which persisted after excluding loci implicated in previous studies (OR = 1.07, P = 1.7 × 10-6). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 × 10-11) and neurobehavioral phenotypes in mouse (OR = 1.18, P = 7.3 × 10-5). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by nonallelic homologous recombination.

PubMed Disclaimer

Figures

Figure 1
Figure 1. CNV Burden
(A) Forest plot of CNV burden (measured here as genes affected by CNV), partitioned by genotyping platform, with the full PGC sample at the bottom. CNV burden is calculated by combining CNV gains and losses. Numbers of case and controls for each platform are listed, and “genes” denotes the mean number of genes affected by a CNV in controls. Burden tests use a logistic regression model predicting SCZ case/control status by CNV burden along with covariates (see methods). The odds ratio is the exponential of the logistic regression coefficient, and odds ratios above one predict increased SCZ risk. (B) CNV burden partitioned by CNV frequency. For reference, for autosomal CNVs, a CNV count of 41 in the sample corresponds to frequency of 0.1% in the full PGC sample. Using the same model as above, each CNV was placed into a single CNV frequency category based on a 50% reciprocal overlap with other CNVs. CNV gene burden with inclusion of all CNVs are shown in green, and burden excluding previously implicated CNV loci are shown in blue.
Figure 2
Figure 2. Gene-set Burden
Gene-set burden test results for rare losses (a, c) and gains (b, d); frames a–b display gene-sets for neuronal function, synaptic components, neurological and neurodevelopmental phenotypes in human; frames c–d display gene-sets for human homologs of mouse genes implicated in abnormal phenotypes (organized by organ systems); both are sorted by –log 10 of the logistic regression deviance test p-value multiplied by the beta coefficient sign, obtained for rare losses when including known loci. Gene-sets passing the 10% BH-FDR threshold are marked with “*”. Gene-sets representing brain expression patterns were omitted from the figure because only a few were significant (losses: 1, gains: 3).
Figure 3
Figure 3. Protein Interaction Network for Synaptic Genes
Synaptic and ARC-complex genes intersected by a rare loss in at least 4 case or control subjects and with genic burden Benjamini-Hochberg FDR <= 25% (red discs) were used to query GeneMANIA and retrieve additional protein interaction neighbors, resulting in a network of 136 synaptic genes. Genes are depicted as disks; disk centers are colored based on rare loss frequency (Freq.SZ and Freq.CT) being prevalent in cases or controls; disk borders are colored to mark (i) gene implication in human dominant or X-linked neurological or neurodevelopmental phenotype, (ii) de novo mutation (DeN) reported by Fromer et al. , split between LOF (frameshift, stop-gain, core splice site) and missense or amino acid insertion / deletion, (iii) implication in mouse neurobehavioral abnormality. Pre-synaptic adhesion molecules (NRXN1, NRXN3), post-synaptic scaffolds (DLG1, DLG2, DLGAP1, SHANK1, SHANK2) and glutamatergic ionotropic receptors (GRID1, GRID2, GRIN1, GRIA4) constitute a highly connected subnetwork with more losses in cases than controls.
Figure 4
Figure 4. Gene Based Manhattan Plot
Manhattan plot displaying the –log10 deviance p-value for (a) CNV losses and (b) CNV gains the gene-based test. P-value cutoffs corresponding to FWER < 0.05 and BH-FDR < 0.05 are highlighted in red and blue, respectively. Loci significant after multiple test correction are labeled.
Figure 5
Figure 5. Manhattan plot of breakpoint-level associations across the Neurexin-1 locus
The manhattan plot (for deletions) represents empirical P-values at each deletion breakpoint. CNV tracks display duplications (blue) and deletions (red) detected in cases and controls from the PGC SCZ dataset.

References

    1. Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012;148:1223–41. - PMC - PubMed
    1. Walsh T, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science. 2008;320:539–43. - PubMed
    1. The International Schizophrenia, C. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 2008;455:237–241. - PMC - PubMed
    1. Malhotra D, et al. High frequencies of de novo CNVs in bipolar disorder and schizophrenia. Neuron. 2011;72:951–63. - PMC - PubMed
    1. Xu B, et al. Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet. 2008;40:880–5. - PubMed

Publication types

Substances