Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 May 29;488(1-2):288-96.
doi: 10.1016/0006-8993(89)90720-8.

Further evidence in support of taurine as a mediator of synaptic transmission in the frog spinal cord

Affiliations

Further evidence in support of taurine as a mediator of synaptic transmission in the frog spinal cord

A L Padjen et al. Brain Res. .

Abstract

It has been reported that 6-aminomethyl-3-methyl-4H,1,2,4-benzothiadiazine-1, 1-dioxide (AMBD, TAG) is a specific blocker of taurine and beta-alanine responses in the central nervous system. We have re-examined the effect of AMBD on amino acid and synaptically evoked responses recorded from isolated hemisected frog spinal cords by means of the sucrose gap technique. When indirect responses were blocked by adding tetrodotoxin (0.2 microM) or manganese chloride (2 mM) to the normal Ringer solution, AMBD (0.01-0.5 mM) selectively antagonized taurine, beta-alanine, hypotaurine and kojic amine evoked depolarizations of primary afferents at their intramedullary part (dorsal root terminals, DRT) and on dorsal root ganglia (DRG), without significantly affecting responses to glutamate (on DRT), glycine (on DRT) or GABA (on DRT and DRG). Depolarizing responses to taurine and beta-alanine (1 mM) were depressed by up to 50% with 0.1 mM AMBD and often completely antagonized with 0.25 mM AMBD. In normal Ringer solution, AMBD selectively antagonized the dorsal root potential evoked by ventral root stimulation (VR-DRP, threshold at 0.02 mM AMBD, 90% block with 0.25 mM); other synaptic potentials increased in duration and/or amplitude, demonstrating a strong convulsant effect of AMBD. Thus, the depolarizing responses of taurine, beta-alanine and hypotaurine on primary afferents are pharmacologically indistinguishable from the VR-DRP. These results are in agreement with the proposal that taurine or a taurine-like substance (possibly beta-alanine or hypotaurine) is the mediator of VR-DRP in amphibian spinal cord.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources