Perfect timing: splicing and transcription rates in living cells
- PMID: 27873472
- PMCID: PMC5355006
- DOI: 10.1002/wrna.1401
Perfect timing: splicing and transcription rates in living cells
Abstract
An important step toward understanding gene regulation is the elucidation of the time necessary for the completion of individual steps. Measurement of reaction rates can reveal potential nodes for regulation. For example, measurements of in vivo transcription elongation rates reveal regulation by DNA sequence, gene architecture, and chromatin. Pre-mRNA splicing is regulated by transcription elongation rates and vice versa, yet the rates of RNA processing reactions remain largely elusive. Since the 1980s, numerous model systems and approaches have been used to determine the precise timing of splicing in vivo. Because splicing can be co-transcriptional, the position of Pol II when splicing is detected has been used as a proxy for time by some investigators. In addition to these 'distance-based' measurements, 'time-based' measurements have been possible through live cell imaging, metabolic labeling of RNA, and gene induction. Yet splicing rates can be convolved by the time it takes for transcription, spliceosome assembly and spliceosome disassembly. The variety of assays and systems used has, perhaps not surprisingly, led to reports of widely differing splicing rates in vivo. Recently, single molecule RNA-seq has indicated that splicing occurs more quickly than previously deduced. Here we comprehensively review these findings and discuss evidence that splicing and transcription rates are closely coordinated, facilitating the efficiency of gene expression. On the other hand, introduction of splicing delays through as yet unknown mechanisms provide opportunity for regulation. More work is needed to understand how cells optimize the rates of gene expression for a range of biological conditions. WIREs RNA 2017, 8:e1401. doi: 10.1002/wrna.1401 For further resources related to this article, please visit the WIREs website.
© 2016 Wiley Periodicals, Inc.
Figures
References
-
- Naftelberg S, Schor IE, Ast G, Kornblihtt AR. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annu Rev Biochem. 2015;84:165–98. - PubMed
-
- Martinez-Rucobo FW, Kohler R, van de Waterbeemd M, Heck AJR, Hemann M, Herzog F, et al. Molecular Basis of Transcription-Coupled Pre-mRNA Capping. Molecular cell. 2015;58(6):1079–89. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
