De novo and inherited SCN8A epilepsy mutations detected by gene panel analysis
- PMID: 27875746
- PMCID: PMC5321682
- DOI: 10.1016/j.eplepsyres.2016.11.002
De novo and inherited SCN8A epilepsy mutations detected by gene panel analysis
Abstract
Objectives: To determine the incidence of pathogenic SCN8A variants in a cohort of epilepsy patients referred for clinical genetic testing. We also investigated the contribution of SCN8A to autism spectrum disorder, intellectual disability, and neuromuscular disorders in individuals referred for clinical genetic testing at the same testing laboratory.
Methods: Sequence data from 275 epilepsy panels screened by Emory Genetics Laboratory were reviewed for variants in SCN8A. Two additional cases with variants in SCN8A were ascertained from other testing laboratories. Parental samples were tested for variant segregation and clinical histories were examined. SCN8A variants detected from gene panel analyses for autism spectrum disorder, intellectual disability, and neuromuscular disorders were also examined.
Results: Five variants in SCN8A were identified in five individuals with epilepsy. Three variants were de novo, one was inherited from an affected parent, and one was inherited from an unaffected parent. Four of the individuals have epilepsy and developmental delay/intellectual disability. The remaining individual has a milder epilepsy presentation without cognitive impairment. We also identified an amino acid substitution at an evolutionarily conserved SCN8A residue in a patient who was screened on the autism spectrum disorder panel. Additionally, we examined the distribution of pathogenic SCN8A variants across the Nav1.6 channel and identified four distinct clusters of variants. These clusters are primarily located in regions of the channel that are important for the kinetics of channel inactivation.
Conclusions: Variants in SCN8A may be responsible for a spectrum of epilepsies as well as other neurodevelopmental disorders without seizures. The predominant pathogenic mechanism appears to involve disruption of channel inactivation, leading to gain-of-function effects.
Keywords: Epilepsy; Gene panel analysis; SCN8A; Sodium channels.
Copyright © 2016 Elsevier B.V. All rights reserved.
Figures
References
-
- Anand G, Collett-White F, Orsini A, Thomas S, Jayapal S, Trump N, Zaiwalla Z, Jayawant S. Autosomal dominant SCN8A mutation with an unusually mild phenotype. European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society 2016 - PubMed
-
- Berkovic SF, Heron SE, Giordano L, Marini C, Guerrini R, Kaplan RE, Gambardella A, Steinlein OK, Grinton BE, Dean JT, Bordo L, Hodgson BL, Yamamoto T, Mulley JC, Zara F, Scheffer IE. Benign familial neonatal-infantile seizures: characterization of a new sodium channelopathy. Annals of neurology. 2004;55:550–557. - PubMed
-
- Blanchard MG, Willemsen MH, Walker JB, Dib-Hajj SD, Waxman SG, Jongmans MC, Kleefstra T, van de Warrenburg BP, Praamstra P, Nicolai J, Yntema HG, Bindels RJ, Meisler MH, Kamsteeg EJ. De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. Journal of medical genetics. 2015;52:330–337. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
