Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018;19(1):87-99.
doi: 10.2174/1389203718666161122110200.

Recombinant Approaches for Microbial Xylanases: Recent Advances and Perspectives

Affiliations
Review

Recombinant Approaches for Microbial Xylanases: Recent Advances and Perspectives

Moumita Basu et al. Curr Protein Pept Sci. 2018.

Abstract

Xylanases are crucial enzymes to hydrolyse the xylan of plant hemicellulose in order to complete the carbon cycle. Xylanases have been used widely in a variety of industries ranging from food and feed industry to pulp and paper industry. Most of the industrial processes which using xylanase requires a thermostable and alkali stable enzyme. Therefore it is desired to produce high thermostable and alkali stable xylanase with high activity. In this review a number of molecular techniques are used in this genomic era have been utilized to enhance physiological properties of xylanases for greater commercial application in the industries. A brief outline of diverse molecular techniques such as genome-walking PCR, thermal asymmetric interlaced PCR (TAIL-PCR), staggered extension process (StEP) recombination method, site-directed mutagenesis together with metagenomic approaches have been discussed which are used to improve the charactestics of xylanases and its production. Metagenomic studies along with directed evolution by mutant creation have also been reported as an effective tool in improvement of xylanase activity and its properties. This review comprehensively describes the recent reports and different combinatorial approaches towards production of efficient xylanases.

Keywords: Directed evolution; genomics; metagenomic; molecular cloning; thermostable; xylanases..

PubMed Disclaimer

MeSH terms

LinkOut - more resources