Physiological state tunes mesolimbic signaling: Lessons from sodium appetite and inspiration from Randall R. Sakai
- PMID: 27876640
- PMCID: PMC5777138
- DOI: 10.1016/j.physbeh.2016.11.021
Physiological state tunes mesolimbic signaling: Lessons from sodium appetite and inspiration from Randall R. Sakai
Abstract
Sodium deficit poses a life-threatening challenge to body fluid homeostasis and generates a sodium appetite - the behavioral drive to ingest sodium. Dr. Randall R. Sakai greatly contributed to our understanding of the hormonal responses to negative sodium balance and to the central processing of these signals. Reactivity to the taste of sodium solutions and the motivation to seek and consume sodium changes dramatically with body fluid balance. Here, we review studies that collectively suggest that sodium deficit recruits the mesolimbic system to play a role in the behavioral expression of sodium appetite. The recruitment of the mesolimbic system likely contributes to intense sodium seeking and reinforces sodium consumption observed in deficient animals. Some of the hormones that are released in response to sodium deficit act directly on both dopamine and nucleus accumbens elements. Moreover, the taste of sodium in sodium deficient rats evokes a pattern of dopamine and nucleus accumbens activity that is similar to responses to rewarding stimuli. A very different pattern of activity is observed in non-deficient rats. Given the well-characterized endocrine response to sodium deficit and its central action, sodium appetite becomes an ideal model for understanding the role of mesolimbic signaling in reward, reinforcement and the generation of motivated behavior.
Keywords: Dopamine; Homeostasis; Motivation; Nucleus accumbens; Reward; Sodium appetite.
Copyright © 2016. Published by Elsevier Inc.
Figures


Similar articles
-
Challenges to Body Fluid Homeostasis Differentially Recruit Phasic Dopamine Signaling in a Taste-Selective Manner.J Neurosci. 2018 Aug 1;38(31):6841-6853. doi: 10.1523/JNEUROSCI.0399-18.2018. Epub 2018 Jun 22. J Neurosci. 2018. PMID: 29934352 Free PMC article.
-
Salt appetite in salt-replete rats: involvement of mesolimbic structures in deoxycorticosterone-induced salt craving behavior.Neuroendocrinology. 2000 Jun;71(6):386-95. doi: 10.1159/000054559. Neuroendocrinology. 2000. PMID: 10878500
-
Induction and expression of salt appetite: effects on Fos expression in nucleus accumbens.Behav Brain Res. 2006 Sep 15;172(1):90-6. doi: 10.1016/j.bbr.2006.04.020. Epub 2006 May 18. Behav Brain Res. 2006. PMID: 16712968
-
Parallels and Overlap: The Integration of Homeostatic Signals by Mesolimbic Dopamine Neurons.Front Psychiatry. 2018 Sep 3;9:410. doi: 10.3389/fpsyt.2018.00410. eCollection 2018. Front Psychiatry. 2018. PMID: 30233430 Free PMC article. Review.
-
Central regulation of sodium appetite.Exp Physiol. 2008 Feb;93(2):177-209. doi: 10.1113/expphysiol.2007.039891. Epub 2007 Nov 2. Exp Physiol. 2008. PMID: 17981930 Review.
Cited by
-
Sodium Imbalance in Mice Results Primarily in Compensatory Gene Regulatory Responses in Kidney and Colon, but Not in Taste Tissue.Nutrients. 2020 Apr 3;12(4):995. doi: 10.3390/nu12040995. Nutrients. 2020. PMID: 32260115 Free PMC article.
-
Thirst recruits phasic dopamine signaling through subfornical organ neurons.Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30744-30754. doi: 10.1073/pnas.2009233117. Epub 2020 Nov 16. Proc Natl Acad Sci U S A. 2020. PMID: 33199591 Free PMC article.
-
FGF21 and the Physiological Regulation of Macronutrient Preference.Endocrinology. 2020 Mar 1;161(3):bqaa019. doi: 10.1210/endocr/bqaa019. Endocrinology. 2020. PMID: 32047920 Free PMC article. Review.
-
Separating desire from prediction of outcome value.Trends Cogn Sci. 2023 Oct;27(10):932-946. doi: 10.1016/j.tics.2023.07.007. Epub 2023 Aug 3. Trends Cogn Sci. 2023. PMID: 37543439 Free PMC article. Review.
-
The Functional and Neurobiological Properties of Bad Taste.Physiol Rev. 2019 Jan 1;99(1):605-663. doi: 10.1152/physrev.00044.2017. Physiol Rev. 2019. PMID: 30475657 Free PMC article. Review.
References
-
- Skorecki KL, Brenner BM. Body fluid homeostasis in congestive heart failure and cirrhosis with ascites. Am J Med. 1982;72:323–338. http://dx.doi.org/10.1016/0002-9343(82)90824-5. - DOI - PubMed
-
- Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Després J-P, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB. Heart disease and stroke statistics—2015 update. Circulation. 2015;131:e29–e322. http://dx.doi.org/10.1161/CIR.0000000000000152. - DOI - PubMed
-
- Harring TR, Deal NS, Kuo DC. Disorders of sodium and water balance. Emerg Med Clin North Am. 2014;32:379–401. http://dx.doi.org/10.1016/j.emc.2014.01.001. - DOI - PubMed
-
- Krause EG, Sakai RR. Richter and sodium appetite: from adrenalectomy to molecular biology. Appetite. 2007;49:353–367. http://dx.doi.org/10.1016/j.appet.2007.01.015. - DOI - PMC - PubMed
-
- Richter C. Increased salt appetite in adrenalectomized rats. Am J Phys. 1936;115:155–161.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical