Building machines that learn and think like people
- PMID: 27881212
- DOI: 10.1017/S0140525X16001837
Building machines that learn and think like people
Abstract
Recent progress in artificial intelligence has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats that of humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn and how they learn it. Specifically, we argue that these machines should (1) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (2) ground learning in intuitive theories of physics and psychology to support and enrich the knowledge that is learned; and (3) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes toward these goals that can combine the strengths of recent neural network advances with more structured cognitive models.
Comment in
-
Theories or fragments?Behav Brain Sci. 2017 Jan;40:e258. doi: 10.1017/S0140525X17000073. Behav Brain Sci. 2017. PMID: 29342683
-
The architecture challenge: Future artificial-intelligence systems will require sophisticated architectures, and knowledge of the brain might guide their construction.Behav Brain Sci. 2017 Jan;40:e254. doi: 10.1017/S0140525X17000036. Behav Brain Sci. 2017. PMID: 29342684
-
Building machines that learn and think for themselves.Behav Brain Sci. 2017 Jan;40:e255. doi: 10.1017/S0140525X17000048. Behav Brain Sci. 2017. PMID: 29342685
-
Back to the future: The return of cognitive functionalism.Behav Brain Sci. 2017 Jan;40:e257. doi: 10.1017/S0140525X17000061. Behav Brain Sci. 2017. PMID: 29342686
-
Deep-learning networks and the functional architecture of executive control.Behav Brain Sci. 2017 Jan;40:e261. doi: 10.1017/S0140525X17000103. Behav Brain Sci. 2017. PMID: 29342687
-
Children begin with the same start-up software, but their software updates are cultural.Behav Brain Sci. 2017 Jan;40:e260. doi: 10.1017/S0140525X17000097. Behav Brain Sci. 2017. PMID: 29342688
-
Causal generative models are just a start.Behav Brain Sci. 2017 Jan;40:e262. doi: 10.1017/S0140525X17000115. Behav Brain Sci. 2017. PMID: 29342689
-
What can the brain teach us about building artificial intelligence?Behav Brain Sci. 2017 Jan;40:e265. doi: 10.1017/S0140525X17000140. Behav Brain Sci. 2017. PMID: 29342690
-
Thinking like animals or thinking like colleagues?Behav Brain Sci. 2017 Jan;40:e263. doi: 10.1017/S0140525X17000127. Behav Brain Sci. 2017. PMID: 29342691
-
Evidence from machines that learn and think like people.Behav Brain Sci. 2017 Jan;40:e264. doi: 10.1017/S0140525X17000139. Behav Brain Sci. 2017. PMID: 29342692
-
Understand the cogs to understand cognition.Behav Brain Sci. 2017 Jan;40:e272. doi: 10.1017/S0140525X17000218. Behav Brain Sci. 2017. PMID: 29342693
-
Crossmodal lifelong learning in hybrid neural embodied architectures.Behav Brain Sci. 2017 Jan;40:e280. doi: 10.1017/S0140525X17000292. Behav Brain Sci. 2017. PMID: 29342694
-
Social-motor experience and perception-action learning bring efficiency to machines.Behav Brain Sci. 2017 Jan;40:e273. doi: 10.1017/S0140525X1700022X. Behav Brain Sci. 2017. PMID: 29342695
-
Autonomous development and learning in artificial intelligence and robotics: Scaling up deep learning to human-like learning.Behav Brain Sci. 2017 Jan;40:e275. doi: 10.1017/S0140525X17000243. Behav Brain Sci. 2017. PMID: 29342696
-
The fork in the road.Behav Brain Sci. 2017 Jan;40:e278. doi: 10.1017/S0140525X17000279. Behav Brain Sci. 2017. PMID: 29342697
-
Avoiding frostbite: It helps to learn from others.Behav Brain Sci. 2017 Jan;40:e279. doi: 10.1017/S0140525X17000280. Behav Brain Sci. 2017. PMID: 29342698
-
Digging deeper on "deep" learning: A computational ecology approach.Behav Brain Sci. 2017 Jan;40:e256. doi: 10.1017/S0140525X1700005X. Behav Brain Sci. 2017. PMID: 29342699
-
Building brains that communicate like machines.Behav Brain Sci. 2017 Jan;40:e266. doi: 10.1017/S0140525X17000152. Behav Brain Sci. 2017. PMID: 29342700
-
Building on prior knowledge without building it in.Behav Brain Sci. 2017 Jan;40:e268. doi: 10.1017/S0140525X17000176. Behav Brain Sci. 2017. PMID: 29342701
-
Will human-like machines make human-like mistakes?Behav Brain Sci. 2017 Jan;40:e270. doi: 10.1017/S0140525X1700019X. Behav Brain Sci. 2017. PMID: 29342702
-
The humanness of artificial non-normative personalities.Behav Brain Sci. 2017 Jan;40:e259. doi: 10.1017/S0140525X17000085. Behav Brain Sci. 2017. PMID: 29342703
-
The importance of motivation and emotion for explaining human cognition.Behav Brain Sci. 2017 Jan;40:e267. doi: 10.1017/S0140525X17000164. Behav Brain Sci. 2017. PMID: 29342704
-
Building machines that adapt and compute like brains.Behav Brain Sci. 2017 Jan;40:e269. doi: 10.1017/S0140525X17000188. Behav Brain Sci. 2017. PMID: 29342705
-
Benefits of embodiment.Behav Brain Sci. 2017 Jan;40:e271. doi: 10.1017/S0140525X17000206. Behav Brain Sci. 2017. PMID: 29342706
-
Human-like machines: Transparency and comprehensibility.Behav Brain Sci. 2017 Jan;40:e276. doi: 10.1017/S0140525X17000255. Behav Brain Sci. 2017. PMID: 29342707
-
The argument for single-purpose robots.Behav Brain Sci. 2017 Jan;40:e274. doi: 10.1017/S0140525X17000231. Behav Brain Sci. 2017. PMID: 29342709
-
Intelligent machines and human minds.Behav Brain Sci. 2017 Jan;40:e277. doi: 10.1017/S0140525X17000267. Behav Brain Sci. 2017. PMID: 29342710
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
