Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair
- PMID: 27881299
- DOI: 10.1016/j.cell.2016.10.001
Transient RNA-DNA Hybrids Are Required for Efficient Double-Strand Break Repair
Abstract
RNA-DNA hybrids are a major internal cause of DNA damage within cells, and their degradation by RNase H enzymes is important for maintaining genomic stability. Here, we identified an unexpected role for RNA-DNA hybrids and RNase H enzymes in DNA repair. Using a site-specific DNA double-strand break (DSB) system in Schizosaccharomyces pombe, we showed that RNA-DNA hybrids form as part of the homologous-recombination (HR)-mediated DSB repair process and that RNase H enzymes are essential for their degradation and efficient completion of DNA repair. Deleting RNase H stabilizes RNA-DNA hybrids around DSB sites and strongly impairs recruitment of the ssDNA-binding RPA complex. In contrast, overexpressing RNase H1 destabilizes these hybrids, leading to excessive strand resection and RPA recruitment and to severe loss of repeat regions around DSBs. Our study challenges the existing model of HR-mediated DSB repair and reveals a surprising role for RNA-DNA hybrids in maintaining genomic stability.
Keywords: DNA repair; DSB repair; R loops; RNA-DNA hybrids; RNase H; RPA; genome stability; homologous recombination.
Copyright © 2016 Elsevier Inc. All rights reserved.
Comment in
-
The Good and Bad of RNA:DNA Hybrids in Double-Strand Break Repair.Mol Cell. 2016 Nov 17;64(4):643-644. doi: 10.1016/j.molcel.2016.11.010. Mol Cell. 2016. PMID: 27863224
-
DNA repair: RNA-DNA hybrids: double-edged swords.Nat Rev Genet. 2017 Jan;18(1):3. doi: 10.1038/nrg.2016.153. Epub 2016 Nov 21. Nat Rev Genet. 2017. PMID: 27867192 No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
