Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels
- PMID: 27881736
- PMCID: PMC5133437
- DOI: 10.1098/rsob.160162
Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels
Erratum in
-
Correction to 'Reactive oxygen species drive evolution of pro-biofilm variants in pathogens by modulating cyclic-di-GMP levels'.Open Biol. 2017 Sep;7(9):170197. doi: 10.1098/rsob.170197. Open Biol. 2017. PMID: 28954819 Free PMC article. No abstract available.
Abstract
The host immune system offers a hostile environment with antimicrobials and reactive oxygen species (ROS) that are detrimental to bacterial pathogens, forcing them to adapt and evolve for survival. However, the contribution of oxidative stress to pathogen evolution remains elusive. Using an experimental evolution strategy, we show that exposure of the opportunistic pathogen Pseudomonas aeruginosa to sub-lethal hydrogen peroxide (H2O2) levels over 120 generations led to the emergence of pro-biofilm rough small colony variants (RSCVs), which could be abrogated by l-glutathione antioxidants. Comparative genomic analysis of the RSCVs revealed that mutations in the wspF gene, which encodes for a repressor of WspR diguanylate cyclase (DGC), were responsible for increased intracellular cyclic-di-GMP content and production of Psl exopolysaccharide. Psl provides the first line of defence against ROS and macrophages, ensuring the survival fitness of RSCVs over wild-type P. aeruginosa Our study demonstrated that ROS is an essential driving force for the selection of pro-biofilm forming pathogenic variants. Understanding the fundamental mechanism of these genotypic and phenotypic adaptations will improve treatment strategies for combating chronic infections.
Keywords: Pseudomonas aeruginosa; adaptive evolution; biofilms; c-di-GMP; reactive oxygen species; rough small colony variants.
© 2016 The Authors.
Figures







Similar articles
-
The Cyclic AMP-Vfr Signaling Pathway in Pseudomonas aeruginosa Is Inhibited by Cyclic Di-GMP.J Bacteriol. 2015 Jul;197(13):2190-200. doi: 10.1128/JB.00193-15. Epub 2015 Apr 20. J Bacteriol. 2015. PMID: 25897033 Free PMC article.
-
Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung.J Bacteriol. 2009 Jun;191(11):3492-503. doi: 10.1128/JB.00119-09. Epub 2009 Mar 27. J Bacteriol. 2009. PMID: 19329647 Free PMC article.
-
C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth.Sci Rep. 2015 May 20;5:10052. doi: 10.1038/srep10052. Sci Rep. 2015. PMID: 25992876 Free PMC article.
-
Small colony variants of Pseudomonas aeruginosa in chronic bacterial infection of the lung in cystic fibrosis.Future Microbiol. 2015;10(2):231-9. doi: 10.2217/fmb.14.107. Future Microbiol. 2015. PMID: 25689535 Review.
-
Rugose small colony variant and its hyper-biofilm in Pseudomonas aeruginosa: Adaption, evolution, and biotechnological potential.Biotechnol Adv. 2021 Dec;53:107862. doi: 10.1016/j.biotechadv.2021.107862. Epub 2021 Oct 28. Biotechnol Adv. 2021. PMID: 34718136 Review.
Cited by
-
bifA Regulates Biofilm Development of Pseudomonas putida MnB1 as a Primary Response to H2O2 and Mn2.Front Microbiol. 2018 Jul 10;9:1490. doi: 10.3389/fmicb.2018.01490. eCollection 2018. Front Microbiol. 2018. PMID: 30042743 Free PMC article.
-
A Vibrio-based microbial platform for accelerated lignocellulosic sugar conversion.Biotechnol Biofuels Bioprod. 2022 May 25;15(1):58. doi: 10.1186/s13068-022-02157-3. Biotechnol Biofuels Bioprod. 2022. PMID: 35614459 Free PMC article.
-
Oxidative stress induced by Etoposide anti-cancer chemotherapy drives the emergence of tumor-associated bacteria resistance to fluoroquinolones.J Adv Res. 2024 Jan;55:33-44. doi: 10.1016/j.jare.2023.02.011. Epub 2023 Feb 21. J Adv Res. 2024. PMID: 36822389 Free PMC article.
-
Gross transcriptomic analysis of Pseudomonas putida for diagnosing environmental shifts.Microb Biotechnol. 2020 Jan;13(1):263-273. doi: 10.1111/1751-7915.13404. Epub 2019 Apr 7. Microb Biotechnol. 2020. PMID: 30957409 Free PMC article.
-
Airway immunometabolites fuel Pseudomonas aeruginosa infection.Respir Res. 2020 Dec 10;21(1):326. doi: 10.1186/s12931-020-01591-x. Respir Res. 2020. PMID: 33302964 Free PMC article. Review.
References
-
- Bjarnsholt T, Jensen PO, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Hoiby N. 2009. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr. Pulmonol. 44, 547–558. (doi:10.1002/ppul.21011) - DOI - PubMed
-
- Young D, Hussell T, Dougan G. 2002. Chronic bacterial infections: living with unwanted guests. Nat. Immunol. 3, 1026–1032. (doi:10.1038/ni1102-1026) - DOI - PubMed
-
- Domenech M, Ramos-Sevillano E, Garcia E, Moscoso M, Yuste J. 2013. Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infect. Immun. 81, 2606–2615. (doi:10.1128/IAI.00491-13) - DOI - PMC - PubMed
-
- Alhede M, Bjarnsholt T, Givskov M, Alhede M. 2014. Pseudomonas aeruginosa biofilms: mechanisms of immune evasion. Adv. Appl. Microbiol. 86, 1–40. (doi:10.1016/B978-0-12-800262-9.00001-9) - DOI - PubMed
-
- Chiang WC, Nilsson M, Jensen PO, Hoiby N, Nielsen TE, Givskov M, Tolker-Nielsen T. 2013. Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 57, 2352–2361. (doi:10.1128/AAC.00001-13) - DOI - PMC - PubMed
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources