Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb;47(2):406-418.
doi: 10.1002/eji.201646342. Epub 2016 Dec 21.

Mitochondrial reactive oxygen species suppress humoral immune response through reduction of CD19 expression in B cells in mice

Affiliations
Free article

Mitochondrial reactive oxygen species suppress humoral immune response through reduction of CD19 expression in B cells in mice

Masato Ogura et al. Eur J Immunol. 2017 Feb.
Free article

Abstract

Reactive oxygen species (ROS) are implicated in the modulation of diverse processes including immune responses. To evaluate the effects of metabolic ROS produced by mitochondria on B-cell function and development, we created transgenic (Tg) mice expressing a phosphorylation-defective mutant of succinate dehydrogenase A in B cells (bSDHAY215F ). Splenic B cells in male, but not female, bSDHAY215F mice produced three times more ROS than those in the control mice, and had decreased production of IgM, IgG1 , and IgG3 , and affinity maturation of IgG1 against T-cell-dependent antigens. Following immunization, the male bSDHAY215F mice further displayed suppressed germinal center (GC) formation, and proliferation of GC B cells. Signaling analysis revealed defects in the intrinsic BCR responses, such as activation of Lyn, Btk, and PLCγ2, thus resulting in reduced intracellular Ca2+ mobilization. Notably, the expression levels of B-cell co-receptor CD19 and its interaction with Lyn after BCR ligation were significantly reduced in B cells from male bSDHAY215F mice. These results suggest that mitochondrial ROS suppress humoral immune responses through reduction of CD19 expression and resultant BCR signaling in B cells. Therefore, B-cell immunity may be more labile to oxidative stress in male mice than in female mice.

Keywords: B cells; Gender difference; Immune responses; Mitochondria; ROS.

PubMed Disclaimer

MeSH terms

LinkOut - more resources