Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Mar;159(3):366-377.
doi: 10.1111/ppl.12531. Epub 2017 Jan 19.

Nitric oxide is involved in methane-induced adventitious root formation in cucumber

Affiliations

Nitric oxide is involved in methane-induced adventitious root formation in cucumber

Fang Qi et al. Physiol Plant. 2017 Mar.

Abstract

Our previous studies revealed that methane (CH4 ) induces adventitious rooting in cucumber. However, the corresponding molecular mechanism is still elusive. In this work, we discovered that CH4 triggered the accumulation of nitric oxide (NO) and thereafter cucumber adventitious rooting, mimicking the inducing effects of sodium nitroprusside (SNP) and NONOate (two NO-releasing compounds). Above mentioned responses were sensitive to NO scavenger(s), showing that the accumulation of NO and adventitious root development were respectively impaired. Inhibitor test and biochemical analysis suggested that endogenous NO mainly produced by mammalian NO synthase-like enzyme and diamine oxidases (DAO), might be required for adventitious root formation elicited by CH4 . Molecular evidence confirmed that CH4 -mediated induction of several marker genes responsible for adventitious root development, including CsDNAJ-1, CsCDPK1, CsCDPK5, cell division-related gene CsCDC6, and two auxin signaling genes, CsAux22D-like and CsAux22B-like, was casually dependent on NO signaling. The possible involvement of S-nitrosylation during the mentioned CH4 responses was preliminarily illustrated. Taken together, through pharmacological, anatomical and molecular approaches, it is suggested that NO might be involved in CH4 -induced cucumber adventitious rooting, and CH4 -eliciated NO-targeted proteins might be partially modulated at transcriptional and post-translational levels. Our work may increase the understanding of the mechanisms underlying CH4 -elicited root organogenesis in higher plants.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources