Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Feb 1:187:82-88.
doi: 10.1016/j.jenvman.2016.11.032. Epub 2016 Nov 22.

Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis

Affiliations

Dye degradation by green heterogeneous Fenton catalysts prepared in presence of Camellia sinensis

Samira S F Carvalho et al. J Environ Manage. .

Abstract

This work describes the synthesis and characterization of supported green iron catalysts, prepared with Camellia sinensis tea extract, and their application in heterogeneous Fenton degradation of pollutant dyes. The influence of the catalyst synthesis conditions in the iron and organic content were investigated by X-ray fluorescence and thermogravimetric analyses. Irregular, chain-like nanoparticles, in the size range of 20-100 nm, capped by polyphenolic natural compounds, were visualized by TEM micrographs. TEM-EDS revealed a high iron content in the nanoparticles as well as a high carbon content all over the catalyst surface, indicating the coverage by the polyphenolic compounds of the tea. X-ray powder diffraction revealed the amorphous nature of the nanoparticles, tentatively ascribed to iron(II)/(III) oxides and oxohydroxides composites. The Fenton degradation of different dyes was successfully accomplished, leading to complete decolourization in less than 3 h of reaction. Influence of hydrogen peroxide concentration, catalyst dosage, pH, temperature and catalyst support, were investigated. The catalysts prepared with black tea over silica furnished the higher iron contents and were the most actives for dye degradation.

Keywords: Dye removal; Fenton system; Iron nanoparticles; Plant extract.

PubMed Disclaimer

LinkOut - more resources