Removal of Metal Nanoparticles Colloidal Solutions by Water Plants
- PMID: 27885620
- PMCID: PMC5122523
- DOI: 10.1186/s11671-016-1742-9
Removal of Metal Nanoparticles Colloidal Solutions by Water Plants
Abstract
The ability of seven species of aquatic plants (Elodea canadensis, Najas guadelupensis, Vallisneria spiralis L., Riccia fluitans L., Limnobium laevigatum, Pistia stratiotes L., and Salvinia natans L.) to absorb metal nanoparticles from colloidal solutions was studied. It was established that investigated aquatic plants have a high capacity for removal of metal nanoparticles from aqueous solution (30-100%) which indicates their high phytoremediation potential. Analysis of the water samples content for elements including the mixture of colloidal solutions of metal nanoparticles (Mn, Cu, Zn, Ag + Ag2O) before and after exposure to plants showed no significant differences when using submerged or free-floating hydrophytes so-called pleuston. However, it was found that the presence of submerged hydrophytes in aqueous medium (E. canadensis, N. guadelupensis, V. spiralis L., and R. fluitans L.) and significant changes in the content of photosynthetic pigments, unlike free-floating hydrophytes (L. laevigatum, P. stratiotes L., S. natans L.), had occur. Pleuston possesses higher potential for phytoremediation of contaminated water basins polluted by metal nanoparticles. In terms of removal of nanoparticles among studied free-floating hydrophytes, P. stratiotes L. and S. natans L. deserve on special attention.
Keywords: Aquatic plants; Metal nanoparticles; Phytoremediation; Water macrophytes.
Figures
References
-
- Saharan V (2011) Advances in nanobiotechnology for agriculture. In: Current topics in biotechnology & microbiology, Lap Lambert Academic Publishing AG & CO. KG, Dudweller Landstr, Germany, pp 156–167
-
- Handy RD, Shaw BJ (2007). Toxic effects of nanoparticles and nanomaterials: implications for public health, risk assessment and the public perception of nanotechnology. Health, Risk & Society, 9(2):125–144
-
- Owen R, Handy RD. Formulating the problems for environmental risk assessment of nanomaterials. Environ Sci Technol. 2007;41:582–588. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
