The human alpha-amylase multigene family consists of haplotypes with variable numbers of genes
- PMID: 2788608
- DOI: 10.1016/0888-7543(89)90083-9
The human alpha-amylase multigene family consists of haplotypes with variable numbers of genes
Abstract
Polymorphic amylase protein patterns have suggested the presence in the human genome of various haplotypes encoding these allozymes. To investigate the genomic organization of the human alpha-amylase genes, we isolated the pertinent genes from a cosmid library constructed of DNA from an individual expressing three different salivary amylase allozymes. From the restriction maps of the overlapping cosmids and a comparison of these maps with the restriction enzyme patterns of DNA from the donor and family members, we were able to identify two haplotypes consisting of very different numbers of salivary amylase genes. The short haplotype contains two pancreatic genes (AMY2A and AMY2B) and one salivary amylase gene (AMY1C), arranged in the order 2B-2A-1C, encompassing a total length of approximately 100 kb. The long haplotype spans about 300 kb and contains six additional genes arranged in two repeats, each one consisting of two salivary amylase genes (AMY1A and AMY1B) and a pseudogene lacking the first three exons (AMYP1). The order of the amylase genes within the repeat is 1A-1B-P1. All genes are in a head-to-tail orientation except AMY1B, which has the reverse orientation with respect to the other genes. Analysis of somatic cell hybrids confirmed the presence of these short and long haplotypes. Furthermore, we present evidence for the existence of additional haplotypes in the human population and propose a general model for the evolution of the human alpha-amylase multigene family. A general designation 2B-2A-(1A-1B-P)n-1C can describe these haplotypes, n being 0 and 2 for the short and the long haplotypes presented in this paper, respectively.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Miscellaneous