Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Apr;13(3):1031-1040.
doi: 10.1016/j.nano.2016.11.008. Epub 2016 Nov 22.

Modulation of voltage-gated conductances of retinal horizontal cells by UV-excited TiO2 nanoparticles

Affiliations

Modulation of voltage-gated conductances of retinal horizontal cells by UV-excited TiO2 nanoparticles

Xenia Meshik et al. Nanomedicine. 2017 Apr.

Abstract

This study examines the ability of optically-excited titanium dioxide nanoparticles to influence voltage-gated ion channels in retinal horizontal cells. Voltage clamp recordings were obtained in the presence and absence of TiO2 and ultraviolet laser excitation. Significant current changes were observed in response to UV light, particularly in the -40 mV to +40 mV region where voltage-gated Na+ and K+ channels have the highest conductance. Cells in proximity to UV-excited TiO2 exhibited a left-shift in the current-voltage relation of around 10 mV in the activation of Na+ currents. These trends were not observed in control experiments where cells were excited with UV light without being exposed to TiO2. Electrostatic force microscopy confirmed that electric fields can be induced in TiO2 with UV light. Simulations using the Hodgkin-Huxley model yielded results which agreed with the experimental data and showed the I-V characteristics of individual ion channels in the presence of UV-excited TiO2.

Keywords: Electrostatic force microscopy; Hodgkin–Huxley model; Retinal horizontal cell; TiO(2) nanoparticle; Voltage-gated ion channel.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources