Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2016 Nov 10:10:90.
doi: 10.3389/fncir.2016.00090. eCollection 2016.

Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia

Affiliations
Review

Contribution of TMS and rTMS in the Understanding of the Pathophysiology and in the Treatment of Dystonia

Pierre Lozeron et al. Front Neural Circuits. .

Abstract

Dystonias represent a heterogeneous group of movement disorders responsible for sustained muscle contraction, abnormal postures, and muscle twists. It can affect focal or segmental body parts or be generalized. Primary dystonia is the most common form of dystonia but it can also be secondary to metabolic or structural dysfunction, the consequence of a drug's side-effect or of genetic origin. The pathophysiology is still not elucidated. Based on lesion studies, dystonia has been regarded as a pure motor dysfunction of the basal ganglia loop. However, basal ganglia lesions do not consistently produce dystonia and lesions outside basal ganglia can lead to dystonia; mild sensory abnormalities have been reported in the dystonic limb and imaging studies have shown involvement of multiple other brain regions including the cerebellum and the cerebral motor, premotor and sensorimotor cortices. Transcranial magnetic stimulation (TMS) is a non-invasive technique of brain stimulation with a magnetic field applied over the cortex allowing investigation of cortical excitability. Hyperexcitability of contralateral motor cortex has been suggested to be the trigger of focal dystonia. High or low frequency repetitive TMS (rTMS) can induce excitatory or inhibitory lasting effects beyond the time of stimulation and protocols have been developed having either a positive or a negative effect on cortical excitability and associated with prevention of cell death, γ-aminobutyric acid (GABA) interneurons mediated inhibition and brain-derived neurotrophic factor modulation. rTMS studies as a therapeutic strategy of dystonia have been conducted to modulate the cerebral areas involved in the disease. Especially, when applied on the contralateral (pre)-motor cortex or supplementary motor area of brains of small cohorts of dystonic patients, rTMS has shown a beneficial transient clinical effect in association with restrained motor cortex excitability. TMS is currently a valuable tool to improve our understanding of the pathophysiology of dystonia but large controlled studies using sham stimulation are still necessary to delineate the place of rTMS in the therapeutic strategy of dystonia. In this review, we will focus successively on the use of TMS as a tool to better understand pathophysiology, and the use of rTMS as a therapeutic strategy.

Keywords: basal ganglia; dystonia; integration; plasticity; surround inhibition; transcranial magnetic stimulation.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Schematic representation of the basal ganglia circuitry. GPi, Globus Pallidus internus; GPe, Globus Pallidus externus; STN, subthalamic nucleus; SNr, substantia nigra pars reticulata; GLU, glutamate; GABA, gamma-aminobutyric acid. The following areas are target areas to improve dystonia with rTMS: primary cortex, premotor and supplementary motor cortex, somatosensory cortex (SSC), anterior cingulate cortex (ACC), and cerebellar cortex.

References

    1. Albanese A., Bhatia K., Bressman S. B., Delong M. R., Fahn S., Fung V. S., et al. (2013). Phenomenology and classification of dystonia: a consensus update. Mov. Disord. 28 863–873. 10.1002/mds.25475 - DOI - PMC - PubMed
    1. Albanese A., Romito L. M., Calandrella D. (2015). Therapeutic advances in dystonia. Mov. Disord. 30 1547–1556. 10.1002/mds.26384 - DOI - PubMed
    1. Allam N., Brasil-Neto J. P., Brandão P., Weiler F., Barros Filho J. D., Tomaz C. (2007). Relief of primary cervical dystonia symptoms by low frequency transcranial magnetic stimulation of the premotor cortex: case report. Arq. Neuropsiquiatr. 65 697–699. 10.1590/S0004-282X2007000400030 - DOI - PubMed
    1. Alterman R. L., Snyder B. J. (2007). Deep brain stimulation for torsion dystonia. Acta Neurochir. Suppl. 97 191–199. 10.1007/978-3-211-33081-4_21 - DOI - PubMed
    1. Andrew J., Fowler C. J., Harrison M. J. G. (1983). Stereotaxic thalamotomy in 55 cases of dystonia. Brain 106 981–1000. 10.1093/brain/106.4.981 - DOI - PubMed

Publication types

MeSH terms