Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan 17;8(3):4618-4628.
doi: 10.18632/oncotarget.13492.

Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia

Affiliations

Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia

Judith M Boer et al. Oncotarget. .

Abstract

Approximately 15% of pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) is characterized by gene expression similar to that of BCR-ABL1-positive disease and unfavorable prognosis. This BCR-ABL1-like subtype shows a high frequency of B-cell development gene aberrations and tyrosine kinase-activating lesions. To evaluate the clinical significance of tyrosine kinase gene fusions in children with BCP-ALL, we studied the frequency of recently identified tyrosine kinase fusions, associated genetic features, and prognosis in a representative Dutch/German cohort. We identified 14 tyrosine kinase fusions among 77 BCR-ABL1-like cases (18%) and none among 76 non-BCR-ABL1-like B-other cases. Novel exon fusions were identified for RCSD1-ABL2 and TERF2-JAK2. JAK2 mutation was mutually exclusive with tyrosine kinase fusions and only occurred in cases with high CRLF2 expression. The non/late response rate and levels of minimal residual disease in the fusion-positive BCR-ABL1-like group were higher than in the non-BCR-ABL1-like B-others (p<0.01), and also higher, albeit not statistically significant, compared with the fusion-negative BCR-ABL1-like group. The 8-year cumulative incidence of relapse in the fusion-positive BCR-ABL1-like group (35%) was comparable with that in the fusion-negative BCR-ABL1-like group (35%), and worse than in the non-BCR-ABL1-like B-other group (17%, p=0.07). IKZF1 deletions, predominantly other than the dominant-negative isoform and full deletion, co-occurred with tyrosine kinase fusions. This study shows that tyrosine kinase fusion-positive cases are a high-risk subtype of BCP-ALL, which warrants further studies with specific kinase inhibitors to improve outcome.

Keywords: BCR-ABL1-like; minimal residual disease; pediatric B cell precursor acute lymphoblastic leukemia; tyrosine kinase fusion.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1. Distribution of tyrosine kinase fusions and CRLF2 high expression cases
Pie diagrams showing the percentages of tyrosine kinase (TK) fusion cases and CRLF2 high expression among A. 77 BCR-ABL1-like B-other cases, and B. 76 non-BCR-ABL1-like B-other cases. Within the CRLF2 high expression cases, a sub-distribution of cases with JAK2 mutation and/or PAR1 deletion is shown. In the non-BCR-ABL1-like B-other cases, 2 PAR1-deleted cases were not tested for JAK2 mutations.
Figure 2
Figure 2. BCR-ABL1-like tyrosine kinase fusion cases
A. Clinical characteristics and follow-up for the tyrosine kinase fusion cases. Barplot representing years from diagnosis to event or censoring. Treatment protocol and arm, prednison window response (Pred), morphological response after induction therapy (Resp), minimal residual disease (MRD), and deletion status of IKZF1 are shown. MRD monitoring by PCR was performed for research purposes in ALL-9 and COALL03 and for MRD-guided risk stratification in ALL-10. WT indicates no IKZF1 deletion. For definition of Pred, Resp, and MRD see footnotes Table 3. Response ‘unkn’ indicates patients with low cellularity bone marrow which could not be evaluated. * Indicates patients who received bone marrow transplant, for which HR-treated cases were eligible. B. Cumulative incidence of relapse and non-response curves for tyrosine kinase fusion positive BCR-ABL1-like cases, fusion-negative BCR-ABL1-like cases, and non-BCR-ABL1-like B-other cases. Relapse and non-response were considered as events, death as competing event. Cumulative incidence probabilities were estimated using a competing risk model, equality was tested with the Gray test.

Similar articles

Cited by

References

    1. Biondi A, Schrappe M, De Lorenzo P, Castor A, Lucchini G, Gandemer V, Pieters R, Stary J, Escherich G, Campbell M, Li CK, Vora A, Arico M, et al. Imatinib after induction for treatment of children and adolescents with Philadelphia-chromosome-positive acute lymphoblastic leukaemia (EsPhALL): a randomised, open-label, intergroup study. Lancet Oncol. 2012;13:936–945. - PMC - PubMed
    1. Schultz KR, Carroll A, Heerema NA, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, Zheng HW, Davies SM, Gaynon PS, Trigg M, Rutledge R, et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: Children's Oncology Group study AALL0031. Leukemia. 2014;28:1467–1471. - PMC - PubMed
    1. Den Boer ML, van Slegtenhorst M, De Menezes RX, Cheok MH, Buijs-Gladdines JG, Peters ST, Van Zutven LJ, Beverloo HB, Van der Spek PJ, Escherich G, Horstmann MA, Janka-Schaub GE, Kamps WA, et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol. 2009;10:125–134. - PMC - PubMed
    1. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, Ma J, Liu W, Cheng C, Schulman BA, Harvey RC, Chen IM, Clifford RJ, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360:470–480. - PMC - PubMed
    1. Van der Veer A, Waanders E, Pieters R, Willemse ME, Van Reijmersdal SV, Russel LJ, Harrison CJ, Evans WE, Van der Velden VHJ, Hoogerbrugge PM, Van Leeuwen F, Escherich G, Horstmann MA, et al. Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood. 2013;122:2622–2629. - PMC - PubMed

MeSH terms