Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017;24(6):622-651.
doi: 10.2174/0929867323666161129124915.

Ureas: Applications in Drug Design

Affiliations
Review

Ureas: Applications in Drug Design

Ajit Dhananjay Jagtap et al. Curr Med Chem. 2017.

Abstract

The unique hydrogen binding capabilities of ureas make them an important functional group to make drug-target interactions and thus incorporated in small molecules displaying broad range of bioactivities. The related research and numerous excellent achievements of ureas applicability in drug design for the modulation of selectivity, stability, toxicity and pharmacokinetic profile of lead molecules have become active topic. This review aims to provide insights in to the significance of urea in drug design by summarizing successful studies of various urea derivatives as modulators biological targets (viz. kinases, NAMPT, soluble epoxide hydrolases, mTOR, proteases, gyrB/parE, and epigenetic enzymes (such as HDAC, PRMT or DOT1L etc.). The findings of this review confirm the importance of urea moiety in medicinal chemistry and stimulate its use as a structural motif with rational decision making approach.

Keywords: Urea; drug design; enzyme inhibitors; epigenetics; intramolecular hydrogen binding; pharmacokinetics.

PubMed Disclaimer

LinkOut - more resources