Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Nov 29;11(11):e0166887.
doi: 10.1371/journal.pone.0166887. eCollection 2016.

Pollen Season Trends (1973-2013) in Stockholm Area, Sweden

Affiliations

Pollen Season Trends (1973-2013) in Stockholm Area, Sweden

Tomas Lind et al. PLoS One. .

Abstract

In the present study, the phenological and quantitative changes in the pollen seasons between 1973 and 2013 in the Stockholm region of Sweden were studied for nine types of pollen (hazel, alder, elm, birch, oak, grass, mugwort, willow and pine). Linear regression models were used to estimate the long term trends in duration, start- and end-dates, peak-values and the yearly accumulated pollen sums of the pollen seasons. The pollen seasons of several arboreal plant species (e.g. birch, oak and pine) were found to start significantly earlier today compared to 41 years earlier, and have an earlier peak-date, while the season of other species seemed largely unaffected. However, the long term trends in the end-dates of pollen seasons differed between arboreal and herbaceous species. For herbaceous species (grass and mugwort), a significant change towards later end-dates was observed and the duration of season was found to have increased. A significant trend towards an earlier end-date was found in the majority of the arboreal plant species (i.e. elm, oak, pine and birch), but the length of the season seemed unaffected. A trend towards an increase in yearly concentrations of pollen was observed for several species; however the reasons for this phenomenon cannot be explained unambiguously by the present study design. The trend of increasing yearly mean air temperatures in the Stockholm area may be the reason to changed phenological patterns of pollen seasons.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist

Figures

Fig 1
Fig 1
The change in pollen season characteristics per year for hazel (Co), alder (Al), elm (Ul), Pine (Pi), oak (Qu), willow (Sx), birch (Be), grass (Po), and mugwort (Ar) a) Duration b) Start-date c) End-date d)Peak-date. Error bars depict 95% confidence interval.
Fig 2
Fig 2. The proportional change/year in total yearly pollen counts.
Error bars depict 95% confidence interval.
Fig 3
Fig 3. Average yearly temperatures in the Bromma measuring station, Stockholm area 1973–2013 (Swedish Meteorology and Hydrology Institute).

Similar articles

Cited by

References

    1. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, et al. (2013) Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change-Abstract for decision-makers. Groupe d'experts intergouvernemental sur l'evolution du climat/Intergovernmental Panel on Climate Change-IPCC, C/O World Meteorological Organization, 7bis Avenue de la Paix, CP 2300 CH-1211 Geneva 2 (Switzerland).
    1. Karlsen SR, Hogda KA, Wielgolaski FE, Tolvanen A, Tommervik H, Poikolainen J, et al. (2009) Growing-season trends in Fennoscandia 1982–2006, determined from satellite and phenology data. Climate Research 39: 275–286.
    1. van Vliet AJH, Overeem A, De Groot RS, Jacobs AFG, Spieksma FTM (2002) The influence of temperature and climate change on the timing of pollen release in the Netherlands. International Journal of Climatology 22: 1757–1767.
    1. Bonofiglio T, Orlandi F, Ruga L, Romano B, Fornaciari M (2013) Climate change impact on the olive pollen season in Mediterranean areas of Italy: air quality in late spring from an allergenic point of view. Environmental Monitoring and Assessment 185: 877–890. 10.1007/s10661-012-2598-9 - DOI - PubMed
    1. Yli-Panula E, Fekedulegn DB, Green BJ, Ranta H (2009) Analysis of airborne betula pollen in Finland; a 31-year perspective. International journal of environmental research and public health 6: 1706–1723. 10.3390/ijerph6061706 - DOI - PMC - PubMed

LinkOut - more resources