Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2017 Jan;48(1):195-203.
doi: 10.1161/STROKEAHA.116.015404. Epub 2016 Nov 29.

Rehabilitation Augments Hematoma Clearance and Attenuates Oxidative Injury and Ion Dyshomeostasis After Brain Hemorrhage

Affiliations

Rehabilitation Augments Hematoma Clearance and Attenuates Oxidative Injury and Ion Dyshomeostasis After Brain Hemorrhage

Michael R Williamson et al. Stroke. 2017 Jan.

Abstract

Background and purpose: We assessed the elemental and biochemical effects of rehabilitation after intracerebral hemorrhage, with emphasis on iron-mediated oxidative stress, using a novel multimodal biospectroscopic imaging approach.

Methods: Collagenase-induced striatal hemorrhage was produced in rats that were randomized to enriched rehabilitation or control intervention starting on day 7. Animals were euthanized on day 14 or 21, a period of ongoing cell death. We used biospectroscopic imaging techniques to precisely determine elemental and molecular changes on day 14. Hemoglobin content was assessed with resonance Raman spectroscopy. X-ray fluorescence imaging mapped iron, chlorine, potassium, calcium, and zinc. Protein aggregation, a marker of oxidative stress, and the distribution of other macromolecules were assessed with Fourier transform infrared imaging. A second study estimated hematoma volume with a spectrophotometric assay at 21 days.

Results: In the first experiment, rehabilitation reduced hematoma hemoglobin content (P=0.004) and the amount of peri-hematoma iron (P<0.001). Oxidative damage was highly localized at the hematoma/peri-hematoma border and was decreased by rehabilitation (P=0.004). Lipid content in the peri-hematoma zone was increased by rehabilitation (P=0.016). Rehabilitation reduced the size of calcium deposits (P=0.040) and attenuated persistent dyshomeostasis of Cl- (P<0.001) but not K+ (P=0.060). The second study confirmed that rehabilitation decreased hematoma volume (P=0.024).

Conclusions: Rehabilitation accelerated clearance of toxic blood components and decreased chronic oxidative stress. As well, rehabilitation attenuated persistent ion dyshomeostasis. These novel effects may underlie rehabilitation-induced neuroprotection and improved recovery of function. Pharmacotherapies targeting these mechanisms may further improve outcome.

Keywords: cell death; intracerebral hemorrhage; oxidative stress; stroke.

PubMed Disclaimer

Publication types

Grants and funding