Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2017 Jan;95(1):1-8.
doi: 10.1007/s00109-016-1492-2. Epub 2016 Nov 29.

Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes

Affiliations
Review

Microbiome and metabolic disease: revisiting the bacterial phylum Bacteroidetes

Elizabeth L Johnson et al. J Mol Med (Berl). 2017 Jan.

Abstract

Bacterial species composition in the gut has emerged as an important factor in obesity and its related metabolic diseases such as type 2 diabetes. Out of thousands of bacterial species-level phylotypes inhabiting the human gut, the majority belong to two dominant phyla, the Bacteroidetes and Firmicutes. Members of the Bacteroidetes in particular have been associated with human metabolic diseases. However, their associations with disease are not always consistent between studies. Delving deeper into the diversity within the Bacteroidetes reveals a vast diversity in genomes and capacities, which partly explain how not all members respond equally to similar environmental conditions in their hosts. Here, we discuss the Bacteroidetes phylum, associations of its members with metabolic phenotypes, and efforts to characterize functionally their interactions with their hosts. Harnessing the Bacteroidetes to promote metabolic health will require a nuanced understanding of how specific strains interact with their microbial neighbors and their hosts under various conditions.

Keywords: Bacteroidetes; Gut microbiome; Obesity; Type 2 diabetes.

PubMed Disclaimer

Figures

Fig. 1.
Fig. 1.
Phylogeny of the Bacteroidetes phylum shows human-associated genera are derived from environmental clades. The 16S rRNA gene sequences used to build this phylogeny were chosen to include representatives of each class within the Bacteroidetes phylum. To add focus on common human-associated Bacteroidetes, additional sequences were included for Alistipes, Prevotella, Bacteroides, S24–7, Rikenella, Porphyromonas, and Paraprevotella. Dictyoglomus thermophilum was used as an outgroup. The tree was built as follows: aligned 16S rRNA sequences (>1300 nt), with high entropy and gapped positions filtered, were used as input for a maximum likelihood phylogenetic estimation in RAxML (assuming a GTR + Υ model of evolution). Nodes on the tree represent >70% bootstrap support (100 replicates). Symbols (human, earth, etc) show the provenance of the sequences. Scale bar units are substitutions/site

References

    1. Human Microbiome Project C Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–214. doi: 10.1038/nature11234. - DOI - PMC - PubMed
    1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464:59–65. doi: 10.1038/nature08821. - DOI - PMC - PubMed
    1. McNeil NI. The contribution of the large intestine to energy supplies in man. Am J Clin Nutr. 1984;39:338–342. - PubMed
    1. Cummings JH. Short chain fatty acids in the human colon. Gut. 1981;22:763–779. doi: 10.1136/gut.22.9.763. - DOI - PMC - PubMed
    1. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci USA. 2005;102:11070–11075. doi: 10.1073/pnas.0504978102. - DOI - PMC - PubMed