Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec 1;16(1):726.
doi: 10.1186/s12879-016-2064-3.

Cost and cost-effectiveness of tuberculosis treatment shortening: a model-based analysis

Affiliations

Cost and cost-effectiveness of tuberculosis treatment shortening: a model-based analysis

G B Gomez et al. BMC Infect Dis. .

Abstract

Background: Despite improvements in treatment success rates for tuberculosis (TB), current six-month regimen duration remains a challenge for many National TB Programmes, health systems, and patients. There is increasing investment in the development of shortened regimens with a number of candidates in phase 3 trials.

Methods: We developed an individual-based decision analytic model to assess the cost-effectiveness of a hypothetical four-month regimen for first-line treatment of TB, assuming non-inferiority to current regimens of six-month duration. The model was populated using extensive, empirically-collected data to estimate the economic impact on both health systems and patients of regimen shortening for first-line TB treatment in South Africa, Brazil, Bangladesh, and Tanzania. We explicitly considered 'real world' constraints such as sub-optimal guideline adherence.

Results: From a societal perspective, a shortened regimen, priced at USD1 per day, could be a cost-saving option in South Africa, Brazil, and Tanzania, but would not be cost-effective in Bangladesh when compared to one gross domestic product (GDP) per capita. Incorporating 'real world' constraints reduces cost-effectiveness. Patient-incurred costs could be reduced in all settings. From a health service perspective, increased drug costs need to be balanced against decreased delivery costs. The new regimen would remain a cost-effective option, when compared to each countries' GDP per capita, even if new drugs cost up to USD7.5 and USD53.8 per day in South Africa and Brazil; this threshold was above USD1 in Tanzania and under USD1 in Bangladesh.

Conclusion: Reducing the duration of first-line TB treatment has the potential for substantial economic gains from a patient perspective. The potential economic gains for health services may also be important, but will be context-specific and dependent on the appropriate pricing of any new regimen.

Keywords: Cost-effectiveness; Economic evaluation; New technologies; Tuberculosis.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Differences in mean TB-related costs per new TB patient between the new 4 four-month regimen and the six-month regiment, by country, scenario, and payer. Difference of means – negative number refers to cost savings of introducing a shortened regimen compared to baseline (standard treatment). Health services costs are calculated assuming a drug price for the shortened regime of 1USD. These costs do not include ART-related costs. We define the societal perspective as the sum of health service and patient (and their households) perspectives. In the case of South Africa (current scenario) and Tanzania (current and guidelines scenario), the societal perspective costs are very close to cost neutral
Fig. 2
Fig. 2
One-way sensitivity analysis by country. a South Africa (current scenario, drug price 1USD per day). We show variations in incremental cost-effectiveness ratio (ICER) to analyse the influence of different assumptions on our conclusions of cost-effectiveness. High/low refers to a higher/lower value of the parameter being considered compared to the baseline value. The x-axis shows the change in the ICER where 0 represents no change (ie baseline ICER). The double red line represents the change in ICER when the result is cost saving (i.e. negative ICERs). Negative ICERs are not at scale and this is indicated by a double slash. b Brazil (guidelines current, drug price 1USD per day). We show variations in incremental cost and incremental effect as opposed to changes in incremental cost-effectiveness ratio (ICER) because for Brazil, the ICER remains negative in this scenario (ie cost saving). The purpose is to investigate the impact of our assumptions on two components of the ICER: incremental cost and incremental effect. High/low refers to a higher/lower value of the parameter being considered compared to the baseline value. The x-axis shows the change in incremental costs or incremental effects (DALYs averted) compared to the baseline result (a negative value in incremental costs means less cost differentials, same applies to the DALYs), 0 represents no change (ie baseline). c Bangladesh (current scenario, drug price 1USD per day). We show variations in incremental cost-effectiveness ratio (ICER) to analyse the influence of different assumptions on our conclusions of cost-effectiveness. High/low refers to a higher/lower value of the parameter being considered compared to the baseline value. The x-axis shows the change in the ICER where 0 represents no change (ie baseline ICER). The single red line represents the change in ICER when the result becomes cost-effective (one GDP as willingness-to-pay threshold). The double red line represents the change in ICER when the result is cost saving (i.e. negative ICERs). Negative ICERs are not at scale and this is indicated by a double slash. d Tanzania (current scenario, drug price 1USD per day). We show variations in incremental cost-effectiveness ratio (ICER) to analyse the influence of different assumptions on our conclusions of cost-effectiveness. High/low refers to a higher/lower value of the parameter being considered compared to the baseline value. The x-axis shows the change in the ICER where 0 represents no change (ie baseline ICER)
Fig. 3
Fig. 3
Estimated drug price per month at which the mean ICER (new regimen vs standard) crosses a particular CE threshold by country and scenario. a Guidelines scenario. b Current scenario. Drug price in the y-axis is the drug price at which the mean ICER crosses the WTP threshold. GDP: gross domestic product per capita

Similar articles

Cited by

References

    1. World Health Organization . Global tuberculosis report 2014. Geneva: World Health Organization; 2014.
    1. Lienhardt C, Vernon A, Raviglione MC. New drugs and new regimens for the treatment of tuberculosis: review of the drug development pipeline and implications for national programmes. Curr Opin Pulm Med. 2010;16(3):186–93. - PubMed
    1. Gospodarevskaya E, Tulloch O, Bunga C, Ferdous S, Jonas A, Islam S, et al. Patient costs during tuberculosis treatment in Bangladesh and Tanzania: the potential of shorter regimens. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2014;18(7):810–7. - PubMed
    1. Gillespie SH, Crook AM, McHugh TD, Mendel CM, Meredith SK, Murray SR, et al. Four-month moxifloxacin-based regimens for drug-sensitive tuberculosis. N Engl J Med. 2014;371(17):1577–87. doi: 10.1056/NEJMoa1407426. - DOI - PMC - PubMed
    1. Diacon AH, Pym A, Grobusch MP, de los Rios JM, Gotuzzo E, Vasilyeva I, et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med. 2014;371(8):723–32. doi: 10.1056/NEJMoa1313865. - DOI - PubMed

Substances