Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2016 Dec 1;11(12):e0167502.
doi: 10.1371/journal.pone.0167502. eCollection 2016.

Electrospray Ionization Efficiency Is Dependent on Different Molecular Descriptors with Respect to Solvent pH and Instrumental Configuration

Affiliations

Electrospray Ionization Efficiency Is Dependent on Different Molecular Descriptors with Respect to Solvent pH and Instrumental Configuration

Andreas Kiontke et al. PLoS One. .

Abstract

Over the past decades, electrospray ionization for mass spectrometry (ESI-MS) has become one of the most commonly employed techniques in analytical chemistry, mainly due to its broad applicability to polar and semipolar compounds and the superior selectivity which is achieved in combination with high resolution separation techniques. However, responsiveness of an analytical method also determines its suitability for the quantitation of chemical compounds; and in electrospray ionization for mass spectrometry, it can vary significantly among different analytes with identical solution concentrations. Therefore, we investigated the ESI-response behavior of 56 nitrogen-containing compounds including aromatic amines and pyridines, two compound classes of high importance to both, synthetic organic chemistry as well as to pharmaceutical sciences. These compounds are increasingly analyzed employing ESI mass spectrometry detection due to their polar, basic character. Signal intensities of the peaks from the protonated molecular ion (MH+) were acquired under different conditions and related to compound properties such as basicity, polarity, volatility and molecular size exploring their quantitative impact on ionization efficiency. As a result, we found that though solution basicity of a compound is the main factor initially determining the ESI response of the protonated molecular ion, other factors such as polarity and vaporability become more important under acidic solvent conditions and may nearly outweigh the importance of basicity under these conditions. Moreover, we show that different molecular descriptors may become important when using different types of instruments for such investigations, a fact not detailed so far in the available literature.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1. ESI response of aniline and 4-aminopyridine in presence of different, pH-modifying electrolytes.
Analyses carried out a) by syringe pump infusion in 50% ACN on the API 2000, b) by sample flow injection in 50% ACN on the Esquire 3000+ and c) by sample flow injection in 80% ACN on the Esquire 3000+.
Fig 2
Fig 2. Response ratio of the ESI signal intensity at pH 3 and pH 7 in dependency on basicity.
The response of every analyte in aqueous solution (pH 7) is compared to a solution adjusted to pH 3 by formic acid, analyzed for the whole set of analytes in 80% ACN on the API 2000.
Fig 3
Fig 3. Signal enhancement by solvent acidification.
Enhancement is more pronounced for compounds with lower boiling points. Response ratio pH 3 / pH 7 plotted over the boiling point, double logarithmic graph.

Similar articles

Cited by

References

    1. Richter G, Schober C, Suess R, Fuchs B, Birkemeyer C, Schiller J. Comparison of the positive and negative ion electrospray ionization and matrix–assisted laser desorption ionization-time-of-flight mass spectra of the reaction products of phosphatidylethanolamines and hypochlorous acid. Anal Biochem. 2008; 376:157–9. 10.1016/j.ab.2008.01.029 - DOI - PubMed
    1. Cheng ZL, Siu KWM, Guevremont R, Berman SS. Electrospray Mass Spectrometry: A Study on Some Aqueous Solutions of Metal Salts. J Am Soc Mass Spectrom. 1992; 3:281–8. 10.1016/1044-0305(92)87055-4 - DOI - PubMed
    1. Tang L, Kebarle P. Dependence of ion intensity in electrospray mass spectrometry on the concentration of the analytes in the electrosprayed solution. Anal Chem. 1993; 65:3654–68.
    1. Cech NB, Enke CG. Relating Electrospray Ionization Response to Nonpolar Character of Small Peptides. Anal Chem. 2000, 72:2717–23. - PubMed
    1. Zhou S, Cook KD. A mechanistic study of electrospray mass spectrometry: charge gradients within electrospray droplets and their influence on ion response. J Am Soc Mass Spectrom. 2001; 12:206–14. 10.1016/S1044-0305(00)00213-0 - DOI - PubMed

MeSH terms