Brain transcriptome atlases: a computational perspective
- PMID: 27909802
- PMCID: PMC5406417
- DOI: 10.1007/s00429-016-1338-2
Brain transcriptome atlases: a computational perspective
Abstract
The immense complexity of the mammalian brain is largely reflected in the underlying molecular signatures of its billions of cells. Brain transcriptome atlases provide valuable insights into gene expression patterns across different brain areas throughout the course of development. Such atlases allow researchers to probe the molecular mechanisms which define neuronal identities, neuroanatomy, and patterns of connectivity. Despite the immense effort put into generating such atlases, to answer fundamental questions in neuroscience, an even greater effort is needed to develop methods to probe the resulting high-dimensional multivariate data. We provide a comprehensive overview of the various computational methods used to analyze brain transcriptome atlases.
Keywords: Brain atlases; Co-expression; Gene expression; Imaging genetics; Omics integration.
Figures





Similar articles
-
Application of Computational Biology to Decode Brain Transcriptomes.Genomics Proteomics Bioinformatics. 2019 Aug;17(4):367-380. doi: 10.1016/j.gpb.2019.03.003. Epub 2019 Oct 23. Genomics Proteomics Bioinformatics. 2019. PMID: 31655213 Free PMC article. Review.
-
Visualization, reconstruction, and integration of neuronal structures in digital brain atlases.Int J Neurosci. 2006 Apr;116(4):431-59. doi: 10.1080/00207450500505860. Int J Neurosci. 2006. PMID: 16574581
-
Deep Neural Networks for In Situ Hybridization Grid Completion and Clustering.IEEE/ACM Trans Comput Biol Bioinform. 2020 Mar-Apr;17(2):536-546. doi: 10.1109/TCBB.2018.2864262. Epub 2018 Aug 7. IEEE/ACM Trans Comput Biol Bioinform. 2020. PMID: 30106689 Free PMC article.
-
Constructing and optimizing 3D atlases from 2D data with application to the developing mouse brain.Elife. 2021 Feb 11;10:e61408. doi: 10.7554/eLife.61408. Elife. 2021. PMID: 33570495 Free PMC article.
-
Cell type-specific transcriptome profiling in mammalian brains.Front Biosci (Landmark Ed). 2016 Jun 1;21(5):973-85. doi: 10.2741/4434. Front Biosci (Landmark Ed). 2016. PMID: 27100485 Free PMC article. Review.
Cited by
-
Functional orderly topography of brain networks associated with gene expression heterogeneity.Commun Biol. 2022 Oct 11;5(1):1083. doi: 10.1038/s42003-022-04039-8. Commun Biol. 2022. PMID: 36220938 Free PMC article.
-
Distinct Genetic Signatures of Cortical and Subcortical Regions Associated with Human Memory.eNeuro. 2019 Dec 17;6(6):ENEURO.0283-19.2019. doi: 10.1523/ENEURO.0283-19.2019. Print 2019 Nov/Dec. eNeuro. 2019. PMID: 31818829 Free PMC article.
-
Exploring the secrets of brain transcriptional regulation: developing methodologies, recent significant findings, and perspectives.Brain Struct Funct. 2021 Mar;226(2):313-322. doi: 10.1007/s00429-021-02230-x. Epub 2021 Feb 5. Brain Struct Funct. 2021. PMID: 33547496 Review.
-
Transcriptome atlases of rat brain regions and their adaptation to diabetes resolution following gastrectomy in the Goto-Kakizaki rat.Mol Brain. 2025 Feb 7;18(1):9. doi: 10.1186/s13041-025-01176-z. Mol Brain. 2025. PMID: 39920851 Free PMC article.
-
Exploration into biomarker potential of region-specific brain gene co-expression networks.Sci Rep. 2020 Oct 13;10(1):17089. doi: 10.1038/s41598-020-73611-1. Sci Rep. 2020. PMID: 33051491 Free PMC article.
References
-
- Abdelmoula WM, Carreira RJ, Shyti R, et al. Automatic registration of imaging mass spectrometry data to the Allen Brain Atlas transcriptome. Anal Chem. 2014;9034:90343M. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources