Homeostasis Meets Motivation in the Battle to Control Food Intake
- PMID: 27911750
- PMCID: PMC5125214
- DOI: 10.1523/JNEUROSCI.2338-16.2016
Homeostasis Meets Motivation in the Battle to Control Food Intake
Abstract
Signals of energy homeostasis interact closely with neural circuits of motivation to control food intake. An emerging hypothesis is that the transition to maladaptive feeding behavior seen in eating disorders or obesity may arise from dysregulation of these interactions. Focusing on key brain regions involved in the control of food intake (ventral tegmental area, striatum, hypothalamus, and thalamus), we describe how activity of specific cell types embedded within these regions can influence distinct components of motivated feeding behavior. We review how signals of energy homeostasis interact with these regions to influence motivated behavioral output and present evidence that experience-dependent neural adaptations in key feeding circuits may represent cellular correlates of impaired food intake control. Future research into mechanisms that restore the balance of control between signals of homeostasis and motivated feeding behavior may inspire new treatment options for eating disorders and obesity.
Keywords: AGRP; POMC; accumbens; arculate nucleus; dieting; dopamine; ghrelin; glucose; insulin; leptin; orexin; paraventricular thalamic nucleus; reward.
Copyright © 2016 the authors 0270-6474/16/3611469-13$15.00/0.
Figures


References
-
- Abizaid A, Liu ZW, Andrews ZB, Shanabrough M, Borok E, Elsworth JD, Roth RH, Sleeman MW, Picciotto MR, Tschöp MH, Gao XB, Horvath TL. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J Clin Invest. 2006;116:3229–3239. doi: 10.1172/JCI29867. - DOI - PMC - PubMed
-
- Al-Hasani R, McCall JG, Shin G, Gomez AM, Schmitz GP, Bernardi JM, Pyo CO, Park SI, Marcinkiewcz CM, Crowley NA, Krashes MJ, Lowell BB, Kash TL, Rogers JA, Bruchas MR. Distinct subpopulations of nucleus accumbens dynorphin neurons drive aversion and reward. Neuron. 2015;87:1063–1077. doi: 10.1016/j.neuron.2015.08.019. - DOI - PMC - PubMed
-
- Alsiö J, Olszewski PK, Norbäck AH, Gunnarsson ZE, Levine AS, Pickering C, Schiöth HB. Dopamine D1 receptor gene expression decreases in the nucleus accumbens upon long-term exposure to palatable food and differs depending on diet-induced obesity phenotype in rats. Neuroscience. 2010;171:779–787. doi: 10.1016/j.neuroscience.2010.09.046. - DOI - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Miscellaneous